This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a function given by ordered-pair class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 11-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvopab6.1 | ⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝜑 ∧ 𝑦 = 𝐵 ) } | |
| fvopab6.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| fvopab6.3 | ⊢ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) | ||
| Assertion | fvopab6 | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅 ∧ 𝜓 ) → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvopab6.1 | ⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝜑 ∧ 𝑦 = 𝐵 ) } | |
| 2 | fvopab6.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | fvopab6.3 | ⊢ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) | |
| 4 | elex | ⊢ ( 𝐴 ∈ 𝐷 → 𝐴 ∈ V ) | |
| 5 | 3 | eqeq2d | ⊢ ( 𝑥 = 𝐴 → ( 𝑦 = 𝐵 ↔ 𝑦 = 𝐶 ) ) |
| 6 | 2 5 | anbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝜑 ∧ 𝑦 = 𝐵 ) ↔ ( 𝜓 ∧ 𝑦 = 𝐶 ) ) ) |
| 7 | iba | ⊢ ( 𝑦 = 𝐶 → ( 𝜓 ↔ ( 𝜓 ∧ 𝑦 = 𝐶 ) ) ) | |
| 8 | 7 | bicomd | ⊢ ( 𝑦 = 𝐶 → ( ( 𝜓 ∧ 𝑦 = 𝐶 ) ↔ 𝜓 ) ) |
| 9 | moeq | ⊢ ∃* 𝑦 𝑦 = 𝐵 | |
| 10 | 9 | moani | ⊢ ∃* 𝑦 ( 𝜑 ∧ 𝑦 = 𝐵 ) |
| 11 | 10 | a1i | ⊢ ( 𝑥 ∈ V → ∃* 𝑦 ( 𝜑 ∧ 𝑦 = 𝐵 ) ) |
| 12 | vex | ⊢ 𝑥 ∈ V | |
| 13 | 12 | biantrur | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) ↔ ( 𝑥 ∈ V ∧ ( 𝜑 ∧ 𝑦 = 𝐵 ) ) ) |
| 14 | 13 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝜑 ∧ 𝑦 = 𝐵 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ V ∧ ( 𝜑 ∧ 𝑦 = 𝐵 ) ) } |
| 15 | 1 14 | eqtri | ⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ V ∧ ( 𝜑 ∧ 𝑦 = 𝐵 ) ) } |
| 16 | 6 8 11 15 | fvopab3ig | ⊢ ( ( 𝐴 ∈ V ∧ 𝐶 ∈ 𝑅 ) → ( 𝜓 → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) ) |
| 17 | 4 16 | sylan | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅 ) → ( 𝜓 → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) ) |
| 18 | 17 | 3impia | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅 ∧ 𝜓 ) → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) |