This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a function given by ordered-pair class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 11-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvopab6.1 | |- F = { <. x , y >. | ( ph /\ y = B ) } |
|
| fvopab6.2 | |- ( x = A -> ( ph <-> ps ) ) |
||
| fvopab6.3 | |- ( x = A -> B = C ) |
||
| Assertion | fvopab6 | |- ( ( A e. D /\ C e. R /\ ps ) -> ( F ` A ) = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvopab6.1 | |- F = { <. x , y >. | ( ph /\ y = B ) } |
|
| 2 | fvopab6.2 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 3 | fvopab6.3 | |- ( x = A -> B = C ) |
|
| 4 | elex | |- ( A e. D -> A e. _V ) |
|
| 5 | 3 | eqeq2d | |- ( x = A -> ( y = B <-> y = C ) ) |
| 6 | 2 5 | anbi12d | |- ( x = A -> ( ( ph /\ y = B ) <-> ( ps /\ y = C ) ) ) |
| 7 | iba | |- ( y = C -> ( ps <-> ( ps /\ y = C ) ) ) |
|
| 8 | 7 | bicomd | |- ( y = C -> ( ( ps /\ y = C ) <-> ps ) ) |
| 9 | moeq | |- E* y y = B |
|
| 10 | 9 | moani | |- E* y ( ph /\ y = B ) |
| 11 | 10 | a1i | |- ( x e. _V -> E* y ( ph /\ y = B ) ) |
| 12 | vex | |- x e. _V |
|
| 13 | 12 | biantrur | |- ( ( ph /\ y = B ) <-> ( x e. _V /\ ( ph /\ y = B ) ) ) |
| 14 | 13 | opabbii | |- { <. x , y >. | ( ph /\ y = B ) } = { <. x , y >. | ( x e. _V /\ ( ph /\ y = B ) ) } |
| 15 | 1 14 | eqtri | |- F = { <. x , y >. | ( x e. _V /\ ( ph /\ y = B ) ) } |
| 16 | 6 8 11 15 | fvopab3ig | |- ( ( A e. _V /\ C e. R ) -> ( ps -> ( F ` A ) = C ) ) |
| 17 | 4 16 | sylan | |- ( ( A e. D /\ C e. R ) -> ( ps -> ( F ` A ) = C ) ) |
| 18 | 17 | 3impia | |- ( ( A e. D /\ C e. R /\ ps ) -> ( F ` A ) = C ) |