This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a function that is expressed as an ordered pair abstraction. (Contributed by NM, 19-Feb-2006) (Revised by Mario Carneiro, 11-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvopab5.1 | |- F = { <. x , y >. | ph } |
|
| fvopab5.2 | |- ( x = A -> ( ph <-> ps ) ) |
||
| Assertion | fvopab5 | |- ( A e. V -> ( F ` A ) = ( iota y ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvopab5.1 | |- F = { <. x , y >. | ph } |
|
| 2 | fvopab5.2 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 3 | elex | |- ( A e. V -> A e. _V ) |
|
| 4 | df-fv | |- ( F ` A ) = ( iota z A F z ) |
|
| 5 | breq2 | |- ( z = y -> ( A F z <-> A F y ) ) |
|
| 6 | nfcv | |- F/_ y A |
|
| 7 | nfopab2 | |- F/_ y { <. x , y >. | ph } |
|
| 8 | 1 7 | nfcxfr | |- F/_ y F |
| 9 | nfcv | |- F/_ y z |
|
| 10 | 6 8 9 | nfbr | |- F/ y A F z |
| 11 | nfv | |- F/ z A F y |
|
| 12 | 5 10 11 | cbviotaw | |- ( iota z A F z ) = ( iota y A F y ) |
| 13 | 4 12 | eqtri | |- ( F ` A ) = ( iota y A F y ) |
| 14 | nfcv | |- F/_ x A |
|
| 15 | nfopab1 | |- F/_ x { <. x , y >. | ph } |
|
| 16 | 1 15 | nfcxfr | |- F/_ x F |
| 17 | nfcv | |- F/_ x y |
|
| 18 | 14 16 17 | nfbr | |- F/ x A F y |
| 19 | nfv | |- F/ x ps |
|
| 20 | 18 19 | nfbi | |- F/ x ( A F y <-> ps ) |
| 21 | breq1 | |- ( x = A -> ( x F y <-> A F y ) ) |
|
| 22 | 21 2 | bibi12d | |- ( x = A -> ( ( x F y <-> ph ) <-> ( A F y <-> ps ) ) ) |
| 23 | df-br | |- ( x F y <-> <. x , y >. e. F ) |
|
| 24 | 1 | eleq2i | |- ( <. x , y >. e. F <-> <. x , y >. e. { <. x , y >. | ph } ) |
| 25 | opabidw | |- ( <. x , y >. e. { <. x , y >. | ph } <-> ph ) |
|
| 26 | 23 24 25 | 3bitri | |- ( x F y <-> ph ) |
| 27 | 20 22 26 | vtoclg1f | |- ( A e. _V -> ( A F y <-> ps ) ) |
| 28 | 27 | iotabidv | |- ( A e. _V -> ( iota y A F y ) = ( iota y ps ) ) |
| 29 | 13 28 | eqtrid | |- ( A e. _V -> ( F ` A ) = ( iota y ps ) ) |
| 30 | 3 29 | syl | |- ( A e. V -> ( F ` A ) = ( iota y ps ) ) |