This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a function given by ordered-pair class abstraction. (Contributed by NM, 23-Oct-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvopab3ig.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| fvopab3ig.2 | |- ( y = B -> ( ps <-> ch ) ) |
||
| fvopab3ig.3 | |- ( x e. C -> E* y ph ) |
||
| fvopab3ig.4 | |- F = { <. x , y >. | ( x e. C /\ ph ) } |
||
| Assertion | fvopab3ig | |- ( ( A e. C /\ B e. D ) -> ( ch -> ( F ` A ) = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvopab3ig.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 2 | fvopab3ig.2 | |- ( y = B -> ( ps <-> ch ) ) |
|
| 3 | fvopab3ig.3 | |- ( x e. C -> E* y ph ) |
|
| 4 | fvopab3ig.4 | |- F = { <. x , y >. | ( x e. C /\ ph ) } |
|
| 5 | eleq1 | |- ( x = A -> ( x e. C <-> A e. C ) ) |
|
| 6 | 5 1 | anbi12d | |- ( x = A -> ( ( x e. C /\ ph ) <-> ( A e. C /\ ps ) ) ) |
| 7 | 2 | anbi2d | |- ( y = B -> ( ( A e. C /\ ps ) <-> ( A e. C /\ ch ) ) ) |
| 8 | 6 7 | opelopabg | |- ( ( A e. C /\ B e. D ) -> ( <. A , B >. e. { <. x , y >. | ( x e. C /\ ph ) } <-> ( A e. C /\ ch ) ) ) |
| 9 | 8 | biimpar | |- ( ( ( A e. C /\ B e. D ) /\ ( A e. C /\ ch ) ) -> <. A , B >. e. { <. x , y >. | ( x e. C /\ ph ) } ) |
| 10 | 9 | exp43 | |- ( A e. C -> ( B e. D -> ( A e. C -> ( ch -> <. A , B >. e. { <. x , y >. | ( x e. C /\ ph ) } ) ) ) ) |
| 11 | 10 | pm2.43a | |- ( A e. C -> ( B e. D -> ( ch -> <. A , B >. e. { <. x , y >. | ( x e. C /\ ph ) } ) ) ) |
| 12 | 11 | imp | |- ( ( A e. C /\ B e. D ) -> ( ch -> <. A , B >. e. { <. x , y >. | ( x e. C /\ ph ) } ) ) |
| 13 | 4 | fveq1i | |- ( F ` A ) = ( { <. x , y >. | ( x e. C /\ ph ) } ` A ) |
| 14 | funopab | |- ( Fun { <. x , y >. | ( x e. C /\ ph ) } <-> A. x E* y ( x e. C /\ ph ) ) |
|
| 15 | moanimv | |- ( E* y ( x e. C /\ ph ) <-> ( x e. C -> E* y ph ) ) |
|
| 16 | 3 15 | mpbir | |- E* y ( x e. C /\ ph ) |
| 17 | 14 16 | mpgbir | |- Fun { <. x , y >. | ( x e. C /\ ph ) } |
| 18 | funopfv | |- ( Fun { <. x , y >. | ( x e. C /\ ph ) } -> ( <. A , B >. e. { <. x , y >. | ( x e. C /\ ph ) } -> ( { <. x , y >. | ( x e. C /\ ph ) } ` A ) = B ) ) |
|
| 19 | 17 18 | ax-mp | |- ( <. A , B >. e. { <. x , y >. | ( x e. C /\ ph ) } -> ( { <. x , y >. | ( x e. C /\ ph ) } ` A ) = B ) |
| 20 | 13 19 | eqtrid | |- ( <. A , B >. e. { <. x , y >. | ( x e. C /\ ph ) } -> ( F ` A ) = B ) |
| 21 | 12 20 | syl6 | |- ( ( A e. C /\ B e. D ) -> ( ch -> ( F ` A ) = B ) ) |