This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closed theorem form of fvmpt . (Contributed by Scott Fenton, 21-Feb-2013) (Revised by Mario Carneiro, 11-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvmptt | ⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ∧ 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | ⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ∧ 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ) | |
| 2 | 1 | fveq1d | ⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ∧ 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐹 ‘ 𝐴 ) = ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) ) |
| 3 | risset | ⊢ ( 𝐴 ∈ 𝐷 ↔ ∃ 𝑥 ∈ 𝐷 𝑥 = 𝐴 ) | |
| 4 | elex | ⊢ ( 𝐶 ∈ 𝑉 → 𝐶 ∈ V ) | |
| 5 | nfa1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) | |
| 6 | nfv | ⊢ Ⅎ 𝑥 𝐶 ∈ V | |
| 7 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) | |
| 8 | 7 | nfeq1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐶 |
| 9 | 6 8 | nfim | ⊢ Ⅎ 𝑥 ( 𝐶 ∈ V → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐶 ) |
| 10 | simprl | ⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝐵 = 𝐶 ) ∧ ( 𝑥 ∈ 𝐷 ∧ 𝐶 ∈ V ) ) → 𝑥 ∈ 𝐷 ) | |
| 11 | simplr | ⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝐵 = 𝐶 ) ∧ ( 𝑥 ∈ 𝐷 ∧ 𝐶 ∈ V ) ) → 𝐵 = 𝐶 ) | |
| 12 | simprr | ⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝐵 = 𝐶 ) ∧ ( 𝑥 ∈ 𝐷 ∧ 𝐶 ∈ V ) ) → 𝐶 ∈ V ) | |
| 13 | 11 12 | eqeltrd | ⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝐵 = 𝐶 ) ∧ ( 𝑥 ∈ 𝐷 ∧ 𝐶 ∈ V ) ) → 𝐵 ∈ V ) |
| 14 | eqid | ⊢ ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) | |
| 15 | 14 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝐵 ∈ V ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 16 | 10 13 15 | syl2anc | ⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝐵 = 𝐶 ) ∧ ( 𝑥 ∈ 𝐷 ∧ 𝐶 ∈ V ) ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 17 | simpll | ⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝐵 = 𝐶 ) ∧ ( 𝑥 ∈ 𝐷 ∧ 𝐶 ∈ V ) ) → 𝑥 = 𝐴 ) | |
| 18 | 17 | fveq2d | ⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝐵 = 𝐶 ) ∧ ( 𝑥 ∈ 𝐷 ∧ 𝐶 ∈ V ) ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) ) |
| 19 | 16 18 11 | 3eqtr3d | ⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝐵 = 𝐶 ) ∧ ( 𝑥 ∈ 𝐷 ∧ 𝐶 ∈ V ) ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐶 ) |
| 20 | 19 | exp43 | ⊢ ( 𝑥 = 𝐴 → ( 𝐵 = 𝐶 → ( 𝑥 ∈ 𝐷 → ( 𝐶 ∈ V → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐶 ) ) ) ) |
| 21 | 20 | a2i | ⊢ ( ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) → ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐷 → ( 𝐶 ∈ V → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐶 ) ) ) ) |
| 22 | 21 | com23 | ⊢ ( ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) → ( 𝑥 ∈ 𝐷 → ( 𝑥 = 𝐴 → ( 𝐶 ∈ V → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐶 ) ) ) ) |
| 23 | 22 | sps | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) → ( 𝑥 ∈ 𝐷 → ( 𝑥 = 𝐴 → ( 𝐶 ∈ V → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐶 ) ) ) ) |
| 24 | 5 9 23 | rexlimd | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) → ( ∃ 𝑥 ∈ 𝐷 𝑥 = 𝐴 → ( 𝐶 ∈ V → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐶 ) ) ) |
| 25 | 4 24 | syl7 | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) → ( ∃ 𝑥 ∈ 𝐷 𝑥 = 𝐴 → ( 𝐶 ∈ 𝑉 → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐶 ) ) ) |
| 26 | 3 25 | biimtrid | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) → ( 𝐴 ∈ 𝐷 → ( 𝐶 ∈ 𝑉 → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐶 ) ) ) |
| 27 | 26 | imp32 | ⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐶 ) |
| 28 | 27 | 3adant2 | ⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ∧ 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐶 ) |
| 29 | 2 28 | eqtrd | ⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ∧ 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ∧ ( 𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) |