This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closed theorem form of fvmpt . (Contributed by Scott Fenton, 21-Feb-2013) (Revised by Mario Carneiro, 11-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvmptt | |- ( ( A. x ( x = A -> B = C ) /\ F = ( x e. D |-> B ) /\ ( A e. D /\ C e. V ) ) -> ( F ` A ) = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | |- ( ( A. x ( x = A -> B = C ) /\ F = ( x e. D |-> B ) /\ ( A e. D /\ C e. V ) ) -> F = ( x e. D |-> B ) ) |
|
| 2 | 1 | fveq1d | |- ( ( A. x ( x = A -> B = C ) /\ F = ( x e. D |-> B ) /\ ( A e. D /\ C e. V ) ) -> ( F ` A ) = ( ( x e. D |-> B ) ` A ) ) |
| 3 | risset | |- ( A e. D <-> E. x e. D x = A ) |
|
| 4 | elex | |- ( C e. V -> C e. _V ) |
|
| 5 | nfa1 | |- F/ x A. x ( x = A -> B = C ) |
|
| 6 | nfv | |- F/ x C e. _V |
|
| 7 | nffvmpt1 | |- F/_ x ( ( x e. D |-> B ) ` A ) |
|
| 8 | 7 | nfeq1 | |- F/ x ( ( x e. D |-> B ) ` A ) = C |
| 9 | 6 8 | nfim | |- F/ x ( C e. _V -> ( ( x e. D |-> B ) ` A ) = C ) |
| 10 | simprl | |- ( ( ( x = A /\ B = C ) /\ ( x e. D /\ C e. _V ) ) -> x e. D ) |
|
| 11 | simplr | |- ( ( ( x = A /\ B = C ) /\ ( x e. D /\ C e. _V ) ) -> B = C ) |
|
| 12 | simprr | |- ( ( ( x = A /\ B = C ) /\ ( x e. D /\ C e. _V ) ) -> C e. _V ) |
|
| 13 | 11 12 | eqeltrd | |- ( ( ( x = A /\ B = C ) /\ ( x e. D /\ C e. _V ) ) -> B e. _V ) |
| 14 | eqid | |- ( x e. D |-> B ) = ( x e. D |-> B ) |
|
| 15 | 14 | fvmpt2 | |- ( ( x e. D /\ B e. _V ) -> ( ( x e. D |-> B ) ` x ) = B ) |
| 16 | 10 13 15 | syl2anc | |- ( ( ( x = A /\ B = C ) /\ ( x e. D /\ C e. _V ) ) -> ( ( x e. D |-> B ) ` x ) = B ) |
| 17 | simpll | |- ( ( ( x = A /\ B = C ) /\ ( x e. D /\ C e. _V ) ) -> x = A ) |
|
| 18 | 17 | fveq2d | |- ( ( ( x = A /\ B = C ) /\ ( x e. D /\ C e. _V ) ) -> ( ( x e. D |-> B ) ` x ) = ( ( x e. D |-> B ) ` A ) ) |
| 19 | 16 18 11 | 3eqtr3d | |- ( ( ( x = A /\ B = C ) /\ ( x e. D /\ C e. _V ) ) -> ( ( x e. D |-> B ) ` A ) = C ) |
| 20 | 19 | exp43 | |- ( x = A -> ( B = C -> ( x e. D -> ( C e. _V -> ( ( x e. D |-> B ) ` A ) = C ) ) ) ) |
| 21 | 20 | a2i | |- ( ( x = A -> B = C ) -> ( x = A -> ( x e. D -> ( C e. _V -> ( ( x e. D |-> B ) ` A ) = C ) ) ) ) |
| 22 | 21 | com23 | |- ( ( x = A -> B = C ) -> ( x e. D -> ( x = A -> ( C e. _V -> ( ( x e. D |-> B ) ` A ) = C ) ) ) ) |
| 23 | 22 | sps | |- ( A. x ( x = A -> B = C ) -> ( x e. D -> ( x = A -> ( C e. _V -> ( ( x e. D |-> B ) ` A ) = C ) ) ) ) |
| 24 | 5 9 23 | rexlimd | |- ( A. x ( x = A -> B = C ) -> ( E. x e. D x = A -> ( C e. _V -> ( ( x e. D |-> B ) ` A ) = C ) ) ) |
| 25 | 4 24 | syl7 | |- ( A. x ( x = A -> B = C ) -> ( E. x e. D x = A -> ( C e. V -> ( ( x e. D |-> B ) ` A ) = C ) ) ) |
| 26 | 3 25 | biimtrid | |- ( A. x ( x = A -> B = C ) -> ( A e. D -> ( C e. V -> ( ( x e. D |-> B ) ` A ) = C ) ) ) |
| 27 | 26 | imp32 | |- ( ( A. x ( x = A -> B = C ) /\ ( A e. D /\ C e. V ) ) -> ( ( x e. D |-> B ) ` A ) = C ) |
| 28 | 27 | 3adant2 | |- ( ( A. x ( x = A -> B = C ) /\ F = ( x e. D |-> B ) /\ ( A e. D /\ C e. V ) ) -> ( ( x e. D |-> B ) ` A ) = C ) |
| 29 | 2 28 | eqtrd | |- ( ( A. x ( x = A -> B = C ) /\ F = ( x e. D |-> B ) /\ ( A e. D /\ C e. V ) ) -> ( F ` A ) = C ) |