This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Values of a one-to-one function between two sets with two elements. Actually, such a function is a bijection. (Contributed by AV, 22-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvf1pr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f | ⊢ ( 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } → 𝐹 : { 𝐴 , 𝐵 } ⟶ { 𝑋 , 𝑌 } ) | |
| 2 | prid1g | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 , 𝐵 } ) | |
| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
| 4 | ffvelcdm | ⊢ ( ( 𝐹 : { 𝐴 , 𝐵 } ⟶ { 𝑋 , 𝑌 } ∧ 𝐴 ∈ { 𝐴 , 𝐵 } ) → ( 𝐹 ‘ 𝐴 ) ∈ { 𝑋 , 𝑌 } ) | |
| 5 | 1 3 4 | syl2anr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ) → ( 𝐹 ‘ 𝐴 ) ∈ { 𝑋 , 𝑌 } ) |
| 6 | prid2g | ⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ { 𝐴 , 𝐵 } ) | |
| 7 | 6 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ { 𝐴 , 𝐵 } ) |
| 8 | ffvelcdm | ⊢ ( ( 𝐹 : { 𝐴 , 𝐵 } ⟶ { 𝑋 , 𝑌 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 } ) → ( 𝐹 ‘ 𝐵 ) ∈ { 𝑋 , 𝑌 } ) | |
| 9 | 1 7 8 | syl2anr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ) → ( 𝐹 ‘ 𝐵 ) ∈ { 𝑋 , 𝑌 } ) |
| 10 | elpri | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ { 𝑋 , 𝑌 } → ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∨ ( 𝐹 ‘ 𝐴 ) = 𝑌 ) ) | |
| 11 | elpri | ⊢ ( ( 𝐹 ‘ 𝐵 ) ∈ { 𝑋 , 𝑌 } → ( ( 𝐹 ‘ 𝐵 ) = 𝑋 ∨ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ) | |
| 12 | eqtr3 | ⊢ ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ) | |
| 13 | 3 7 | jca | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ∈ { 𝐴 , 𝐵 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 } ) ) |
| 14 | f1veqaeq | ⊢ ( ( 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ∧ ( 𝐴 ∈ { 𝐴 , 𝐵 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 } ) ) → ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) → 𝐴 = 𝐵 ) ) | |
| 15 | 13 14 | sylan2 | ⊢ ( ( 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ) → ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) → 𝐴 = 𝐵 ) ) |
| 16 | 12 15 | syl5 | ⊢ ( ( 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) → 𝐴 = 𝐵 ) ) |
| 17 | 16 | ex | ⊢ ( 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) → 𝐴 = 𝐵 ) ) ) |
| 18 | eqneqall | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ≠ 𝐵 → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) | |
| 19 | 18 | com12 | ⊢ ( 𝐴 ≠ 𝐵 → ( 𝐴 = 𝐵 → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) |
| 20 | 19 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 = 𝐵 → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) |
| 21 | 20 | a1i | ⊢ ( 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 = 𝐵 → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) ) |
| 22 | 17 21 | syldd | ⊢ ( 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) ) |
| 23 | 22 | impcom | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) |
| 24 | olc | ⊢ ( ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) | |
| 25 | 24 | a1i | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) |
| 26 | orc | ⊢ ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) | |
| 27 | 26 | a1i | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) |
| 28 | eqtr3 | ⊢ ( ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ) | |
| 29 | 28 15 | syl5 | ⊢ ( ( 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) → 𝐴 = 𝐵 ) ) |
| 30 | 29 | ex | ⊢ ( 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) → 𝐴 = 𝐵 ) ) ) |
| 31 | 30 21 | syldd | ⊢ ( 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) ) |
| 32 | 31 | impcom | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) |
| 33 | 23 25 27 32 | ccased | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ) → ( ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∨ ( 𝐹 ‘ 𝐴 ) = 𝑌 ) ∧ ( ( 𝐹 ‘ 𝐵 ) = 𝑋 ∨ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) |
| 34 | 10 11 33 | syl2ani | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ) → ( ( ( 𝐹 ‘ 𝐴 ) ∈ { 𝑋 , 𝑌 } ∧ ( 𝐹 ‘ 𝐵 ) ∈ { 𝑋 , 𝑌 } ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) |
| 35 | 5 9 34 | mp2and | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) |