This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Values of a one-to-one function between two sets with two elements. Actually, such a function is a bijection. (Contributed by AV, 22-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvf1pr | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ F : { A , B } -1-1-> { X , Y } ) -> ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) \/ ( ( F ` A ) = Y /\ ( F ` B ) = X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f | |- ( F : { A , B } -1-1-> { X , Y } -> F : { A , B } --> { X , Y } ) |
|
| 2 | prid1g | |- ( A e. V -> A e. { A , B } ) |
|
| 3 | 2 | 3ad2ant1 | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> A e. { A , B } ) |
| 4 | ffvelcdm | |- ( ( F : { A , B } --> { X , Y } /\ A e. { A , B } ) -> ( F ` A ) e. { X , Y } ) |
|
| 5 | 1 3 4 | syl2anr | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ F : { A , B } -1-1-> { X , Y } ) -> ( F ` A ) e. { X , Y } ) |
| 6 | prid2g | |- ( B e. W -> B e. { A , B } ) |
|
| 7 | 6 | 3ad2ant2 | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> B e. { A , B } ) |
| 8 | ffvelcdm | |- ( ( F : { A , B } --> { X , Y } /\ B e. { A , B } ) -> ( F ` B ) e. { X , Y } ) |
|
| 9 | 1 7 8 | syl2anr | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ F : { A , B } -1-1-> { X , Y } ) -> ( F ` B ) e. { X , Y } ) |
| 10 | elpri | |- ( ( F ` A ) e. { X , Y } -> ( ( F ` A ) = X \/ ( F ` A ) = Y ) ) |
|
| 11 | elpri | |- ( ( F ` B ) e. { X , Y } -> ( ( F ` B ) = X \/ ( F ` B ) = Y ) ) |
|
| 12 | eqtr3 | |- ( ( ( F ` A ) = X /\ ( F ` B ) = X ) -> ( F ` A ) = ( F ` B ) ) |
|
| 13 | 3 7 | jca | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( A e. { A , B } /\ B e. { A , B } ) ) |
| 14 | f1veqaeq | |- ( ( F : { A , B } -1-1-> { X , Y } /\ ( A e. { A , B } /\ B e. { A , B } ) ) -> ( ( F ` A ) = ( F ` B ) -> A = B ) ) |
|
| 15 | 13 14 | sylan2 | |- ( ( F : { A , B } -1-1-> { X , Y } /\ ( A e. V /\ B e. W /\ A =/= B ) ) -> ( ( F ` A ) = ( F ` B ) -> A = B ) ) |
| 16 | 12 15 | syl5 | |- ( ( F : { A , B } -1-1-> { X , Y } /\ ( A e. V /\ B e. W /\ A =/= B ) ) -> ( ( ( F ` A ) = X /\ ( F ` B ) = X ) -> A = B ) ) |
| 17 | 16 | ex | |- ( F : { A , B } -1-1-> { X , Y } -> ( ( A e. V /\ B e. W /\ A =/= B ) -> ( ( ( F ` A ) = X /\ ( F ` B ) = X ) -> A = B ) ) ) |
| 18 | eqneqall | |- ( A = B -> ( A =/= B -> ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) \/ ( ( F ` A ) = Y /\ ( F ` B ) = X ) ) ) ) |
|
| 19 | 18 | com12 | |- ( A =/= B -> ( A = B -> ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) \/ ( ( F ` A ) = Y /\ ( F ` B ) = X ) ) ) ) |
| 20 | 19 | 3ad2ant3 | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( A = B -> ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) \/ ( ( F ` A ) = Y /\ ( F ` B ) = X ) ) ) ) |
| 21 | 20 | a1i | |- ( F : { A , B } -1-1-> { X , Y } -> ( ( A e. V /\ B e. W /\ A =/= B ) -> ( A = B -> ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) \/ ( ( F ` A ) = Y /\ ( F ` B ) = X ) ) ) ) ) |
| 22 | 17 21 | syldd | |- ( F : { A , B } -1-1-> { X , Y } -> ( ( A e. V /\ B e. W /\ A =/= B ) -> ( ( ( F ` A ) = X /\ ( F ` B ) = X ) -> ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) \/ ( ( F ` A ) = Y /\ ( F ` B ) = X ) ) ) ) ) |
| 23 | 22 | impcom | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ F : { A , B } -1-1-> { X , Y } ) -> ( ( ( F ` A ) = X /\ ( F ` B ) = X ) -> ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) \/ ( ( F ` A ) = Y /\ ( F ` B ) = X ) ) ) ) |
| 24 | olc | |- ( ( ( F ` A ) = Y /\ ( F ` B ) = X ) -> ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) \/ ( ( F ` A ) = Y /\ ( F ` B ) = X ) ) ) |
|
| 25 | 24 | a1i | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ F : { A , B } -1-1-> { X , Y } ) -> ( ( ( F ` A ) = Y /\ ( F ` B ) = X ) -> ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) \/ ( ( F ` A ) = Y /\ ( F ` B ) = X ) ) ) ) |
| 26 | orc | |- ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) -> ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) \/ ( ( F ` A ) = Y /\ ( F ` B ) = X ) ) ) |
|
| 27 | 26 | a1i | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ F : { A , B } -1-1-> { X , Y } ) -> ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) -> ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) \/ ( ( F ` A ) = Y /\ ( F ` B ) = X ) ) ) ) |
| 28 | eqtr3 | |- ( ( ( F ` A ) = Y /\ ( F ` B ) = Y ) -> ( F ` A ) = ( F ` B ) ) |
|
| 29 | 28 15 | syl5 | |- ( ( F : { A , B } -1-1-> { X , Y } /\ ( A e. V /\ B e. W /\ A =/= B ) ) -> ( ( ( F ` A ) = Y /\ ( F ` B ) = Y ) -> A = B ) ) |
| 30 | 29 | ex | |- ( F : { A , B } -1-1-> { X , Y } -> ( ( A e. V /\ B e. W /\ A =/= B ) -> ( ( ( F ` A ) = Y /\ ( F ` B ) = Y ) -> A = B ) ) ) |
| 31 | 30 21 | syldd | |- ( F : { A , B } -1-1-> { X , Y } -> ( ( A e. V /\ B e. W /\ A =/= B ) -> ( ( ( F ` A ) = Y /\ ( F ` B ) = Y ) -> ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) \/ ( ( F ` A ) = Y /\ ( F ` B ) = X ) ) ) ) ) |
| 32 | 31 | impcom | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ F : { A , B } -1-1-> { X , Y } ) -> ( ( ( F ` A ) = Y /\ ( F ` B ) = Y ) -> ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) \/ ( ( F ` A ) = Y /\ ( F ` B ) = X ) ) ) ) |
| 33 | 23 25 27 32 | ccased | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ F : { A , B } -1-1-> { X , Y } ) -> ( ( ( ( F ` A ) = X \/ ( F ` A ) = Y ) /\ ( ( F ` B ) = X \/ ( F ` B ) = Y ) ) -> ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) \/ ( ( F ` A ) = Y /\ ( F ` B ) = X ) ) ) ) |
| 34 | 10 11 33 | syl2ani | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ F : { A , B } -1-1-> { X , Y } ) -> ( ( ( F ` A ) e. { X , Y } /\ ( F ` B ) e. { X , Y } ) -> ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) \/ ( ( F ` A ) = Y /\ ( F ` B ) = X ) ) ) ) |
| 35 | 5 9 34 | mp2and | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ F : { A , B } -1-1-> { X , Y } ) -> ( ( ( F ` A ) = X /\ ( F ` B ) = Y ) \/ ( ( F ` A ) = Y /\ ( F ` B ) = X ) ) ) |