This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the empty set is not contained in the range of a function, and the function values of another class (not necessarily a function) are equal to the function values of the function for all elements of the domain of the function, then the class restricted to the domain of the function is the function itself. (Contributed by AV, 28-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fveqdmss.1 | ⊢ 𝐷 = dom 𝐵 | |
| Assertion | fveqressseq | ⊢ ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → ( 𝐴 ↾ 𝐷 ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveqdmss.1 | ⊢ 𝐷 = dom 𝐵 | |
| 2 | 1 | fveqdmss | ⊢ ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → 𝐷 ⊆ dom 𝐴 ) |
| 3 | dmres | ⊢ dom ( 𝐴 ↾ 𝐷 ) = ( 𝐷 ∩ dom 𝐴 ) | |
| 4 | incom | ⊢ ( 𝐷 ∩ dom 𝐴 ) = ( dom 𝐴 ∩ 𝐷 ) | |
| 5 | sseqin2 | ⊢ ( 𝐷 ⊆ dom 𝐴 ↔ ( dom 𝐴 ∩ 𝐷 ) = 𝐷 ) | |
| 6 | 5 | biimpi | ⊢ ( 𝐷 ⊆ dom 𝐴 → ( dom 𝐴 ∩ 𝐷 ) = 𝐷 ) |
| 7 | 4 6 | eqtrid | ⊢ ( 𝐷 ⊆ dom 𝐴 → ( 𝐷 ∩ dom 𝐴 ) = 𝐷 ) |
| 8 | 3 7 | eqtrid | ⊢ ( 𝐷 ⊆ dom 𝐴 → dom ( 𝐴 ↾ 𝐷 ) = 𝐷 ) |
| 9 | 8 1 | eqtrdi | ⊢ ( 𝐷 ⊆ dom 𝐴 → dom ( 𝐴 ↾ 𝐷 ) = dom 𝐵 ) |
| 10 | 2 9 | syl | ⊢ ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → dom ( 𝐴 ↾ 𝐷 ) = dom 𝐵 ) |
| 11 | fvres | ⊢ ( 𝑥 ∈ 𝐷 → ( ( 𝐴 ↾ 𝐷 ) ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) | |
| 12 | 11 | adantl | ⊢ ( ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐴 ↾ 𝐷 ) ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) |
| 13 | id | ⊢ ( ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) → ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) | |
| 14 | 12 13 | sylan9eq | ⊢ ( ( ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → ( ( 𝐴 ↾ 𝐷 ) ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
| 15 | 14 | ex | ⊢ ( ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) → ( ( 𝐴 ↾ 𝐷 ) ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) |
| 16 | 15 | ralimdva | ⊢ ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ) → ( ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) → ∀ 𝑥 ∈ 𝐷 ( ( 𝐴 ↾ 𝐷 ) ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) |
| 17 | 16 | 3impia | ⊢ ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → ∀ 𝑥 ∈ 𝐷 ( ( 𝐴 ↾ 𝐷 ) ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
| 18 | 2 7 | syl | ⊢ ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → ( 𝐷 ∩ dom 𝐴 ) = 𝐷 ) |
| 19 | 3 18 | eqtrid | ⊢ ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → dom ( 𝐴 ↾ 𝐷 ) = 𝐷 ) |
| 20 | 17 19 | raleqtrrdv | ⊢ ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → ∀ 𝑥 ∈ dom ( 𝐴 ↾ 𝐷 ) ( ( 𝐴 ↾ 𝐷 ) ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
| 21 | simpll | ⊢ ( ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ) ∧ 𝑥 ∈ 𝐷 ) → Fun 𝐵 ) | |
| 22 | 1 | eleq2i | ⊢ ( 𝑥 ∈ 𝐷 ↔ 𝑥 ∈ dom 𝐵 ) |
| 23 | 22 | biimpi | ⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ dom 𝐵 ) |
| 24 | 23 | adantl | ⊢ ( ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ) ∧ 𝑥 ∈ 𝐷 ) → 𝑥 ∈ dom 𝐵 ) |
| 25 | simplr | ⊢ ( ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ) ∧ 𝑥 ∈ 𝐷 ) → ∅ ∉ ran 𝐵 ) | |
| 26 | nelrnfvne | ⊢ ( ( Fun 𝐵 ∧ 𝑥 ∈ dom 𝐵 ∧ ∅ ∉ ran 𝐵 ) → ( 𝐵 ‘ 𝑥 ) ≠ ∅ ) | |
| 27 | 21 24 25 26 | syl3anc | ⊢ ( ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ) ∧ 𝑥 ∈ 𝐷 ) → ( 𝐵 ‘ 𝑥 ) ≠ ∅ ) |
| 28 | neeq1 | ⊢ ( ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) → ( ( 𝐴 ‘ 𝑥 ) ≠ ∅ ↔ ( 𝐵 ‘ 𝑥 ) ≠ ∅ ) ) | |
| 29 | 27 28 | syl5ibrcom | ⊢ ( ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) → ( 𝐴 ‘ 𝑥 ) ≠ ∅ ) ) |
| 30 | 29 | ralimdva | ⊢ ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ) → ( ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) → ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) ≠ ∅ ) ) |
| 31 | 30 | 3impia | ⊢ ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) ≠ ∅ ) |
| 32 | fvn0ssdmfun | ⊢ ( ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) ≠ ∅ → ( 𝐷 ⊆ dom 𝐴 ∧ Fun ( 𝐴 ↾ 𝐷 ) ) ) | |
| 33 | 32 | simprd | ⊢ ( ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) ≠ ∅ → Fun ( 𝐴 ↾ 𝐷 ) ) |
| 34 | 31 33 | syl | ⊢ ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → Fun ( 𝐴 ↾ 𝐷 ) ) |
| 35 | simp1 | ⊢ ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → Fun 𝐵 ) | |
| 36 | eqfunfv | ⊢ ( ( Fun ( 𝐴 ↾ 𝐷 ) ∧ Fun 𝐵 ) → ( ( 𝐴 ↾ 𝐷 ) = 𝐵 ↔ ( dom ( 𝐴 ↾ 𝐷 ) = dom 𝐵 ∧ ∀ 𝑥 ∈ dom ( 𝐴 ↾ 𝐷 ) ( ( 𝐴 ↾ 𝐷 ) ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) ) | |
| 37 | 34 35 36 | syl2anc | ⊢ ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → ( ( 𝐴 ↾ 𝐷 ) = 𝐵 ↔ ( dom ( 𝐴 ↾ 𝐷 ) = dom 𝐵 ∧ ∀ 𝑥 ∈ dom ( 𝐴 ↾ 𝐷 ) ( ( 𝐴 ↾ 𝐷 ) ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) ) |
| 38 | 10 20 37 | mpbir2and | ⊢ ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → ( 𝐴 ↾ 𝐷 ) = 𝐵 ) |