This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the value of a function. Definition 6.11 of TakeutiZaring p. 26. (Contributed by NM, 30-Apr-2004) (Revised by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fv3 | ⊢ ( 𝐹 ‘ 𝐴 ) = { 𝑥 ∣ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝐴 𝐹 𝑦 ) ∧ ∃! 𝑦 𝐴 𝐹 𝑦 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfv | ⊢ ( 𝑥 ∈ ( 𝐹 ‘ 𝐴 ) ↔ ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) ) | |
| 2 | biimpr | ⊢ ( ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) → ( 𝑦 = 𝑧 → 𝐴 𝐹 𝑦 ) ) | |
| 3 | 2 | alimi | ⊢ ( ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) → ∀ 𝑦 ( 𝑦 = 𝑧 → 𝐴 𝐹 𝑦 ) ) |
| 4 | breq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝐴 𝐹 𝑦 ↔ 𝐴 𝐹 𝑧 ) ) | |
| 5 | 4 | equsalvw | ⊢ ( ∀ 𝑦 ( 𝑦 = 𝑧 → 𝐴 𝐹 𝑦 ) ↔ 𝐴 𝐹 𝑧 ) |
| 6 | 3 5 | sylib | ⊢ ( ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) → 𝐴 𝐹 𝑧 ) |
| 7 | 6 | anim2i | ⊢ ( ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) → ( 𝑥 ∈ 𝑧 ∧ 𝐴 𝐹 𝑧 ) ) |
| 8 | 7 | eximi | ⊢ ( ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) → ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ 𝐴 𝐹 𝑧 ) ) |
| 9 | elequ2 | ⊢ ( 𝑧 = 𝑦 → ( 𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝑦 ) ) | |
| 10 | breq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝐴 𝐹 𝑧 ↔ 𝐴 𝐹 𝑦 ) ) | |
| 11 | 9 10 | anbi12d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝑥 ∈ 𝑧 ∧ 𝐴 𝐹 𝑧 ) ↔ ( 𝑥 ∈ 𝑦 ∧ 𝐴 𝐹 𝑦 ) ) ) |
| 12 | 11 | cbvexvw | ⊢ ( ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ 𝐴 𝐹 𝑧 ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝐴 𝐹 𝑦 ) ) |
| 13 | 8 12 | sylib | ⊢ ( ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) → ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝐴 𝐹 𝑦 ) ) |
| 14 | exsimpr | ⊢ ( ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) → ∃ 𝑧 ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) | |
| 15 | eu6 | ⊢ ( ∃! 𝑦 𝐴 𝐹 𝑦 ↔ ∃ 𝑧 ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) | |
| 16 | 14 15 | sylibr | ⊢ ( ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) → ∃! 𝑦 𝐴 𝐹 𝑦 ) |
| 17 | 13 16 | jca | ⊢ ( ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) → ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝐴 𝐹 𝑦 ) ∧ ∃! 𝑦 𝐴 𝐹 𝑦 ) ) |
| 18 | nfeu1 | ⊢ Ⅎ 𝑦 ∃! 𝑦 𝐴 𝐹 𝑦 | |
| 19 | nfv | ⊢ Ⅎ 𝑦 𝑥 ∈ 𝑧 | |
| 20 | nfa1 | ⊢ Ⅎ 𝑦 ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) | |
| 21 | 19 20 | nfan | ⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) |
| 22 | 21 | nfex | ⊢ Ⅎ 𝑦 ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) |
| 23 | 18 22 | nfim | ⊢ Ⅎ 𝑦 ( ∃! 𝑦 𝐴 𝐹 𝑦 → ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) ) |
| 24 | biimp | ⊢ ( ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) → ( 𝐴 𝐹 𝑦 → 𝑦 = 𝑧 ) ) | |
| 25 | ax9 | ⊢ ( 𝑦 = 𝑧 → ( 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧 ) ) | |
| 26 | 24 25 | syl6 | ⊢ ( ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) → ( 𝐴 𝐹 𝑦 → ( 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧 ) ) ) |
| 27 | 26 | impcomd | ⊢ ( ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝐴 𝐹 𝑦 ) → 𝑥 ∈ 𝑧 ) ) |
| 28 | 27 | sps | ⊢ ( ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝐴 𝐹 𝑦 ) → 𝑥 ∈ 𝑧 ) ) |
| 29 | 28 | anc2ri | ⊢ ( ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝐴 𝐹 𝑦 ) → ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) ) ) |
| 30 | 29 | com12 | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝐴 𝐹 𝑦 ) → ( ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) → ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) ) ) |
| 31 | 30 | eximdv | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝐴 𝐹 𝑦 ) → ( ∃ 𝑧 ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) → ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) ) ) |
| 32 | 15 31 | biimtrid | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝐴 𝐹 𝑦 ) → ( ∃! 𝑦 𝐴 𝐹 𝑦 → ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) ) ) |
| 33 | 23 32 | exlimi | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝐴 𝐹 𝑦 ) → ( ∃! 𝑦 𝐴 𝐹 𝑦 → ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) ) ) |
| 34 | 33 | imp | ⊢ ( ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝐴 𝐹 𝑦 ) ∧ ∃! 𝑦 𝐴 𝐹 𝑦 ) → ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) ) |
| 35 | 17 34 | impbii | ⊢ ( ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) ↔ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝐴 𝐹 𝑦 ) ∧ ∃! 𝑦 𝐴 𝐹 𝑦 ) ) |
| 36 | 1 35 | bitri | ⊢ ( 𝑥 ∈ ( 𝐹 ‘ 𝐴 ) ↔ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝐴 𝐹 𝑦 ) ∧ ∃! 𝑦 𝐴 𝐹 𝑦 ) ) |
| 37 | 36 | eqabi | ⊢ ( 𝐹 ‘ 𝐴 ) = { 𝑥 ∣ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝐴 𝐹 𝑦 ) ∧ ∃! 𝑦 𝐴 𝐹 𝑦 ) } |