This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a nonempty, finite graph there is a vertex having a nonnegative integer as degree. (Contributed by Alexander van der Vekens, 6-Sep-2018) (Revised by AV, 1-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fusgrn0degnn0.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | fusgrn0degnn0 | ⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅ ) → ∃ 𝑣 ∈ 𝑉 ∃ 𝑛 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fusgrn0degnn0.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | n0 | ⊢ ( 𝑉 ≠ ∅ ↔ ∃ 𝑘 𝑘 ∈ 𝑉 ) | |
| 3 | 1 | vtxdgfusgr | ⊢ ( 𝐺 ∈ FinUSGraph → ∀ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) ∈ ℕ0 ) |
| 4 | fveq2 | ⊢ ( 𝑢 = 𝑘 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) ) | |
| 5 | 4 | eleq1d | ⊢ ( 𝑢 = 𝑘 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) ∈ ℕ0 ↔ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) ∈ ℕ0 ) ) |
| 6 | 5 | rspcv | ⊢ ( 𝑘 ∈ 𝑉 → ( ∀ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) ∈ ℕ0 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) ∈ ℕ0 ) ) |
| 7 | risset | ⊢ ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) ∈ ℕ0 ↔ ∃ 𝑛 ∈ ℕ0 𝑛 = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) ) | |
| 8 | fveqeq2 | ⊢ ( 𝑣 = 𝑘 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ↔ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) = 𝑛 ) ) | |
| 9 | eqcom | ⊢ ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) = 𝑛 ↔ 𝑛 = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) ) | |
| 10 | 8 9 | bitrdi | ⊢ ( 𝑣 = 𝑘 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ↔ 𝑛 = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
| 11 | 10 | rexbidv | ⊢ ( 𝑣 = 𝑘 → ( ∃ 𝑛 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ↔ ∃ 𝑛 ∈ ℕ0 𝑛 = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
| 12 | 11 | rspcev | ⊢ ( ( 𝑘 ∈ 𝑉 ∧ ∃ 𝑛 ∈ ℕ0 𝑛 = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) ) → ∃ 𝑣 ∈ 𝑉 ∃ 𝑛 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ) |
| 13 | 12 | expcom | ⊢ ( ∃ 𝑛 ∈ ℕ0 𝑛 = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) → ( 𝑘 ∈ 𝑉 → ∃ 𝑣 ∈ 𝑉 ∃ 𝑛 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ) ) |
| 14 | 7 13 | sylbi | ⊢ ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) ∈ ℕ0 → ( 𝑘 ∈ 𝑉 → ∃ 𝑣 ∈ 𝑉 ∃ 𝑛 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ) ) |
| 15 | 14 | com12 | ⊢ ( 𝑘 ∈ 𝑉 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) ∈ ℕ0 → ∃ 𝑣 ∈ 𝑉 ∃ 𝑛 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ) ) |
| 16 | 6 15 | syld | ⊢ ( 𝑘 ∈ 𝑉 → ( ∀ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) ∈ ℕ0 → ∃ 𝑣 ∈ 𝑉 ∃ 𝑛 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ) ) |
| 17 | 3 16 | syl5 | ⊢ ( 𝑘 ∈ 𝑉 → ( 𝐺 ∈ FinUSGraph → ∃ 𝑣 ∈ 𝑉 ∃ 𝑛 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ) ) |
| 18 | 17 | exlimiv | ⊢ ( ∃ 𝑘 𝑘 ∈ 𝑉 → ( 𝐺 ∈ FinUSGraph → ∃ 𝑣 ∈ 𝑉 ∃ 𝑛 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ) ) |
| 19 | 2 18 | sylbi | ⊢ ( 𝑉 ≠ ∅ → ( 𝐺 ∈ FinUSGraph → ∃ 𝑣 ∈ 𝑉 ∃ 𝑛 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ) ) |
| 20 | 19 | impcom | ⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅ ) → ∃ 𝑣 ∈ 𝑉 ∃ 𝑛 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ) |