This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a nonempty, finite graph there is a vertex having a nonnegative integer as degree. (Contributed by Alexander van der Vekens, 6-Sep-2018) (Revised by AV, 1-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fusgrn0degnn0.v | |- V = ( Vtx ` G ) |
|
| Assertion | fusgrn0degnn0 | |- ( ( G e. FinUSGraph /\ V =/= (/) ) -> E. v e. V E. n e. NN0 ( ( VtxDeg ` G ) ` v ) = n ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fusgrn0degnn0.v | |- V = ( Vtx ` G ) |
|
| 2 | n0 | |- ( V =/= (/) <-> E. k k e. V ) |
|
| 3 | 1 | vtxdgfusgr | |- ( G e. FinUSGraph -> A. u e. V ( ( VtxDeg ` G ) ` u ) e. NN0 ) |
| 4 | fveq2 | |- ( u = k -> ( ( VtxDeg ` G ) ` u ) = ( ( VtxDeg ` G ) ` k ) ) |
|
| 5 | 4 | eleq1d | |- ( u = k -> ( ( ( VtxDeg ` G ) ` u ) e. NN0 <-> ( ( VtxDeg ` G ) ` k ) e. NN0 ) ) |
| 6 | 5 | rspcv | |- ( k e. V -> ( A. u e. V ( ( VtxDeg ` G ) ` u ) e. NN0 -> ( ( VtxDeg ` G ) ` k ) e. NN0 ) ) |
| 7 | risset | |- ( ( ( VtxDeg ` G ) ` k ) e. NN0 <-> E. n e. NN0 n = ( ( VtxDeg ` G ) ` k ) ) |
|
| 8 | fveqeq2 | |- ( v = k -> ( ( ( VtxDeg ` G ) ` v ) = n <-> ( ( VtxDeg ` G ) ` k ) = n ) ) |
|
| 9 | eqcom | |- ( ( ( VtxDeg ` G ) ` k ) = n <-> n = ( ( VtxDeg ` G ) ` k ) ) |
|
| 10 | 8 9 | bitrdi | |- ( v = k -> ( ( ( VtxDeg ` G ) ` v ) = n <-> n = ( ( VtxDeg ` G ) ` k ) ) ) |
| 11 | 10 | rexbidv | |- ( v = k -> ( E. n e. NN0 ( ( VtxDeg ` G ) ` v ) = n <-> E. n e. NN0 n = ( ( VtxDeg ` G ) ` k ) ) ) |
| 12 | 11 | rspcev | |- ( ( k e. V /\ E. n e. NN0 n = ( ( VtxDeg ` G ) ` k ) ) -> E. v e. V E. n e. NN0 ( ( VtxDeg ` G ) ` v ) = n ) |
| 13 | 12 | expcom | |- ( E. n e. NN0 n = ( ( VtxDeg ` G ) ` k ) -> ( k e. V -> E. v e. V E. n e. NN0 ( ( VtxDeg ` G ) ` v ) = n ) ) |
| 14 | 7 13 | sylbi | |- ( ( ( VtxDeg ` G ) ` k ) e. NN0 -> ( k e. V -> E. v e. V E. n e. NN0 ( ( VtxDeg ` G ) ` v ) = n ) ) |
| 15 | 14 | com12 | |- ( k e. V -> ( ( ( VtxDeg ` G ) ` k ) e. NN0 -> E. v e. V E. n e. NN0 ( ( VtxDeg ` G ) ` v ) = n ) ) |
| 16 | 6 15 | syld | |- ( k e. V -> ( A. u e. V ( ( VtxDeg ` G ) ` u ) e. NN0 -> E. v e. V E. n e. NN0 ( ( VtxDeg ` G ) ` v ) = n ) ) |
| 17 | 3 16 | syl5 | |- ( k e. V -> ( G e. FinUSGraph -> E. v e. V E. n e. NN0 ( ( VtxDeg ` G ) ` v ) = n ) ) |
| 18 | 17 | exlimiv | |- ( E. k k e. V -> ( G e. FinUSGraph -> E. v e. V E. n e. NN0 ( ( VtxDeg ` G ) ` v ) = n ) ) |
| 19 | 2 18 | sylbi | |- ( V =/= (/) -> ( G e. FinUSGraph -> E. v e. V E. n e. NN0 ( ( VtxDeg ` G ) ` v ) = n ) ) |
| 20 | 19 | impcom | |- ( ( G e. FinUSGraph /\ V =/= (/) ) -> E. v e. V E. n e. NN0 ( ( VtxDeg ` G ) ` v ) = n ) |