This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the union of classes is a function, the classes itselves are functions. (Contributed by AV, 18-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fununfun | |- ( Fun ( F u. G ) -> ( Fun F /\ Fun G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funrel | |- ( Fun ( F u. G ) -> Rel ( F u. G ) ) |
|
| 2 | relun | |- ( Rel ( F u. G ) <-> ( Rel F /\ Rel G ) ) |
|
| 3 | 1 2 | sylib | |- ( Fun ( F u. G ) -> ( Rel F /\ Rel G ) ) |
| 4 | simpl | |- ( ( Rel F /\ Rel G ) -> Rel F ) |
|
| 5 | fununmo | |- ( Fun ( F u. G ) -> E* y x F y ) |
|
| 6 | 5 | alrimiv | |- ( Fun ( F u. G ) -> A. x E* y x F y ) |
| 7 | 4 6 | anim12i | |- ( ( ( Rel F /\ Rel G ) /\ Fun ( F u. G ) ) -> ( Rel F /\ A. x E* y x F y ) ) |
| 8 | dffun6 | |- ( Fun F <-> ( Rel F /\ A. x E* y x F y ) ) |
|
| 9 | 7 8 | sylibr | |- ( ( ( Rel F /\ Rel G ) /\ Fun ( F u. G ) ) -> Fun F ) |
| 10 | simpr | |- ( ( Rel F /\ Rel G ) -> Rel G ) |
|
| 11 | uncom | |- ( F u. G ) = ( G u. F ) |
|
| 12 | 11 | funeqi | |- ( Fun ( F u. G ) <-> Fun ( G u. F ) ) |
| 13 | fununmo | |- ( Fun ( G u. F ) -> E* y x G y ) |
|
| 14 | 12 13 | sylbi | |- ( Fun ( F u. G ) -> E* y x G y ) |
| 15 | 14 | alrimiv | |- ( Fun ( F u. G ) -> A. x E* y x G y ) |
| 16 | 10 15 | anim12i | |- ( ( ( Rel F /\ Rel G ) /\ Fun ( F u. G ) ) -> ( Rel G /\ A. x E* y x G y ) ) |
| 17 | dffun6 | |- ( Fun G <-> ( Rel G /\ A. x E* y x G y ) ) |
|
| 18 | 16 17 | sylibr | |- ( ( ( Rel F /\ Rel G ) /\ Fun ( F u. G ) ) -> Fun G ) |
| 19 | 9 18 | jca | |- ( ( ( Rel F /\ Rel G ) /\ Fun ( F u. G ) ) -> ( Fun F /\ Fun G ) ) |
| 20 | 3 19 | mpancom | |- ( Fun ( F u. G ) -> ( Fun F /\ Fun G ) ) |