This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function with removed elements is still a function. (Contributed by AV, 7-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fundif | ⊢ ( Fun 𝐹 → Fun ( 𝐹 ∖ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldif | ⊢ ( Rel 𝐹 → Rel ( 𝐹 ∖ 𝐴 ) ) | |
| 2 | brdif | ⊢ ( 𝑥 ( 𝐹 ∖ 𝐴 ) 𝑦 ↔ ( 𝑥 𝐹 𝑦 ∧ ¬ 𝑥 𝐴 𝑦 ) ) | |
| 3 | brdif | ⊢ ( 𝑥 ( 𝐹 ∖ 𝐴 ) 𝑧 ↔ ( 𝑥 𝐹 𝑧 ∧ ¬ 𝑥 𝐴 𝑧 ) ) | |
| 4 | pm2.27 | ⊢ ( ( 𝑥 𝐹 𝑦 ∧ 𝑥 𝐹 𝑧 ) → ( ( ( 𝑥 𝐹 𝑦 ∧ 𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) → 𝑦 = 𝑧 ) ) | |
| 5 | 4 | ad2ant2r | ⊢ ( ( ( 𝑥 𝐹 𝑦 ∧ ¬ 𝑥 𝐴 𝑦 ) ∧ ( 𝑥 𝐹 𝑧 ∧ ¬ 𝑥 𝐴 𝑧 ) ) → ( ( ( 𝑥 𝐹 𝑦 ∧ 𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 6 | 2 3 5 | syl2anb | ⊢ ( ( 𝑥 ( 𝐹 ∖ 𝐴 ) 𝑦 ∧ 𝑥 ( 𝐹 ∖ 𝐴 ) 𝑧 ) → ( ( ( 𝑥 𝐹 𝑦 ∧ 𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 7 | 6 | com12 | ⊢ ( ( ( 𝑥 𝐹 𝑦 ∧ 𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) → ( ( 𝑥 ( 𝐹 ∖ 𝐴 ) 𝑦 ∧ 𝑥 ( 𝐹 ∖ 𝐴 ) 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 8 | 7 | alimi | ⊢ ( ∀ 𝑧 ( ( 𝑥 𝐹 𝑦 ∧ 𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) → ∀ 𝑧 ( ( 𝑥 ( 𝐹 ∖ 𝐴 ) 𝑦 ∧ 𝑥 ( 𝐹 ∖ 𝐴 ) 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 9 | 8 | 2alimi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐹 𝑦 ∧ 𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝐹 ∖ 𝐴 ) 𝑦 ∧ 𝑥 ( 𝐹 ∖ 𝐴 ) 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 10 | 1 9 | anim12i | ⊢ ( ( Rel 𝐹 ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐹 𝑦 ∧ 𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) ) → ( Rel ( 𝐹 ∖ 𝐴 ) ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝐹 ∖ 𝐴 ) 𝑦 ∧ 𝑥 ( 𝐹 ∖ 𝐴 ) 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
| 11 | dffun2 | ⊢ ( Fun 𝐹 ↔ ( Rel 𝐹 ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐹 𝑦 ∧ 𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) ) ) | |
| 12 | dffun2 | ⊢ ( Fun ( 𝐹 ∖ 𝐴 ) ↔ ( Rel ( 𝐹 ∖ 𝐴 ) ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝐹 ∖ 𝐴 ) 𝑦 ∧ 𝑥 ( 𝐹 ∖ 𝐴 ) 𝑧 ) → 𝑦 = 𝑧 ) ) ) | |
| 13 | 10 11 12 | 3imtr4i | ⊢ ( Fun 𝐹 → Fun ( 𝐹 ∖ 𝐴 ) ) |