This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of expressing membership in the difference of domains of two nested functions. (Contributed by AV, 27-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funeldmdif | ⊢ ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐶 ∈ ( dom 𝐴 ∖ dom 𝐵 ) ↔ ∃ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( 1st ‘ 𝑥 ) = 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funrel | ⊢ ( Fun 𝐴 → Rel 𝐴 ) | |
| 2 | releldmdifi | ⊢ ( ( Rel 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐶 ∈ ( dom 𝐴 ∖ dom 𝐵 ) → ∃ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( 1st ‘ 𝑥 ) = 𝐶 ) ) | |
| 3 | 1 2 | sylan | ⊢ ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐶 ∈ ( dom 𝐴 ∖ dom 𝐵 ) → ∃ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( 1st ‘ 𝑥 ) = 𝐶 ) ) |
| 4 | eldif | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) | |
| 5 | 1stdm | ⊢ ( ( Rel 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 1st ‘ 𝑥 ) ∈ dom 𝐴 ) | |
| 6 | 5 | ex | ⊢ ( Rel 𝐴 → ( 𝑥 ∈ 𝐴 → ( 1st ‘ 𝑥 ) ∈ dom 𝐴 ) ) |
| 7 | 1 6 | syl | ⊢ ( Fun 𝐴 → ( 𝑥 ∈ 𝐴 → ( 1st ‘ 𝑥 ) ∈ dom 𝐴 ) ) |
| 8 | 7 | adantr | ⊢ ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑥 ∈ 𝐴 → ( 1st ‘ 𝑥 ) ∈ dom 𝐴 ) ) |
| 9 | 8 | com12 | ⊢ ( 𝑥 ∈ 𝐴 → ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 1st ‘ 𝑥 ) ∈ dom 𝐴 ) ) |
| 10 | 9 | adantr | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) → ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 1st ‘ 𝑥 ) ∈ dom 𝐴 ) ) |
| 11 | 10 | impcom | ⊢ ( ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) → ( 1st ‘ 𝑥 ) ∈ dom 𝐴 ) |
| 12 | funelss | ⊢ ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 1st ‘ 𝑥 ) ∈ dom 𝐵 → 𝑥 ∈ 𝐵 ) ) | |
| 13 | 12 | 3expa | ⊢ ( ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 1st ‘ 𝑥 ) ∈ dom 𝐵 → 𝑥 ∈ 𝐵 ) ) |
| 14 | 13 | con3d | ⊢ ( ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ¬ 𝑥 ∈ 𝐵 → ¬ ( 1st ‘ 𝑥 ) ∈ dom 𝐵 ) ) |
| 15 | 14 | impr | ⊢ ( ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) → ¬ ( 1st ‘ 𝑥 ) ∈ dom 𝐵 ) |
| 16 | 11 15 | eldifd | ⊢ ( ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) → ( 1st ‘ 𝑥 ) ∈ ( dom 𝐴 ∖ dom 𝐵 ) ) |
| 17 | 16 | 3adant3 | ⊢ ( ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ ( 1st ‘ 𝑥 ) = 𝐶 ) → ( 1st ‘ 𝑥 ) ∈ ( dom 𝐴 ∖ dom 𝐵 ) ) |
| 18 | eleq1 | ⊢ ( ( 1st ‘ 𝑥 ) = 𝐶 → ( ( 1st ‘ 𝑥 ) ∈ ( dom 𝐴 ∖ dom 𝐵 ) ↔ 𝐶 ∈ ( dom 𝐴 ∖ dom 𝐵 ) ) ) | |
| 19 | 18 | 3ad2ant3 | ⊢ ( ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ ( 1st ‘ 𝑥 ) = 𝐶 ) → ( ( 1st ‘ 𝑥 ) ∈ ( dom 𝐴 ∖ dom 𝐵 ) ↔ 𝐶 ∈ ( dom 𝐴 ∖ dom 𝐵 ) ) ) |
| 20 | 17 19 | mpbid | ⊢ ( ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ ( 1st ‘ 𝑥 ) = 𝐶 ) → 𝐶 ∈ ( dom 𝐴 ∖ dom 𝐵 ) ) |
| 21 | 20 | 3exp | ⊢ ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) → ( ( 1st ‘ 𝑥 ) = 𝐶 → 𝐶 ∈ ( dom 𝐴 ∖ dom 𝐵 ) ) ) ) |
| 22 | 4 21 | biimtrid | ⊢ ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → ( ( 1st ‘ 𝑥 ) = 𝐶 → 𝐶 ∈ ( dom 𝐴 ∖ dom 𝐵 ) ) ) ) |
| 23 | 22 | rexlimdv | ⊢ ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∃ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( 1st ‘ 𝑥 ) = 𝐶 → 𝐶 ∈ ( dom 𝐴 ∖ dom 𝐵 ) ) ) |
| 24 | 3 23 | impbid | ⊢ ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐶 ∈ ( dom 𝐴 ∖ dom 𝐵 ) ↔ ∃ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( 1st ‘ 𝑥 ) = 𝐶 ) ) |