This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of expressing membership in the difference of domains of two nested functions. (Contributed by AV, 27-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funeldmdif | |- ( ( Fun A /\ B C_ A ) -> ( C e. ( dom A \ dom B ) <-> E. x e. ( A \ B ) ( 1st ` x ) = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funrel | |- ( Fun A -> Rel A ) |
|
| 2 | releldmdifi | |- ( ( Rel A /\ B C_ A ) -> ( C e. ( dom A \ dom B ) -> E. x e. ( A \ B ) ( 1st ` x ) = C ) ) |
|
| 3 | 1 2 | sylan | |- ( ( Fun A /\ B C_ A ) -> ( C e. ( dom A \ dom B ) -> E. x e. ( A \ B ) ( 1st ` x ) = C ) ) |
| 4 | eldif | |- ( x e. ( A \ B ) <-> ( x e. A /\ -. x e. B ) ) |
|
| 5 | 1stdm | |- ( ( Rel A /\ x e. A ) -> ( 1st ` x ) e. dom A ) |
|
| 6 | 5 | ex | |- ( Rel A -> ( x e. A -> ( 1st ` x ) e. dom A ) ) |
| 7 | 1 6 | syl | |- ( Fun A -> ( x e. A -> ( 1st ` x ) e. dom A ) ) |
| 8 | 7 | adantr | |- ( ( Fun A /\ B C_ A ) -> ( x e. A -> ( 1st ` x ) e. dom A ) ) |
| 9 | 8 | com12 | |- ( x e. A -> ( ( Fun A /\ B C_ A ) -> ( 1st ` x ) e. dom A ) ) |
| 10 | 9 | adantr | |- ( ( x e. A /\ -. x e. B ) -> ( ( Fun A /\ B C_ A ) -> ( 1st ` x ) e. dom A ) ) |
| 11 | 10 | impcom | |- ( ( ( Fun A /\ B C_ A ) /\ ( x e. A /\ -. x e. B ) ) -> ( 1st ` x ) e. dom A ) |
| 12 | funelss | |- ( ( Fun A /\ B C_ A /\ x e. A ) -> ( ( 1st ` x ) e. dom B -> x e. B ) ) |
|
| 13 | 12 | 3expa | |- ( ( ( Fun A /\ B C_ A ) /\ x e. A ) -> ( ( 1st ` x ) e. dom B -> x e. B ) ) |
| 14 | 13 | con3d | |- ( ( ( Fun A /\ B C_ A ) /\ x e. A ) -> ( -. x e. B -> -. ( 1st ` x ) e. dom B ) ) |
| 15 | 14 | impr | |- ( ( ( Fun A /\ B C_ A ) /\ ( x e. A /\ -. x e. B ) ) -> -. ( 1st ` x ) e. dom B ) |
| 16 | 11 15 | eldifd | |- ( ( ( Fun A /\ B C_ A ) /\ ( x e. A /\ -. x e. B ) ) -> ( 1st ` x ) e. ( dom A \ dom B ) ) |
| 17 | 16 | 3adant3 | |- ( ( ( Fun A /\ B C_ A ) /\ ( x e. A /\ -. x e. B ) /\ ( 1st ` x ) = C ) -> ( 1st ` x ) e. ( dom A \ dom B ) ) |
| 18 | eleq1 | |- ( ( 1st ` x ) = C -> ( ( 1st ` x ) e. ( dom A \ dom B ) <-> C e. ( dom A \ dom B ) ) ) |
|
| 19 | 18 | 3ad2ant3 | |- ( ( ( Fun A /\ B C_ A ) /\ ( x e. A /\ -. x e. B ) /\ ( 1st ` x ) = C ) -> ( ( 1st ` x ) e. ( dom A \ dom B ) <-> C e. ( dom A \ dom B ) ) ) |
| 20 | 17 19 | mpbid | |- ( ( ( Fun A /\ B C_ A ) /\ ( x e. A /\ -. x e. B ) /\ ( 1st ` x ) = C ) -> C e. ( dom A \ dom B ) ) |
| 21 | 20 | 3exp | |- ( ( Fun A /\ B C_ A ) -> ( ( x e. A /\ -. x e. B ) -> ( ( 1st ` x ) = C -> C e. ( dom A \ dom B ) ) ) ) |
| 22 | 4 21 | biimtrid | |- ( ( Fun A /\ B C_ A ) -> ( x e. ( A \ B ) -> ( ( 1st ` x ) = C -> C e. ( dom A \ dom B ) ) ) ) |
| 23 | 22 | rexlimdv | |- ( ( Fun A /\ B C_ A ) -> ( E. x e. ( A \ B ) ( 1st ` x ) = C -> C e. ( dom A \ dom B ) ) ) |
| 24 | 3 23 | impbid | |- ( ( Fun A /\ B C_ A ) -> ( C e. ( dom A \ dom B ) <-> E. x e. ( A \ B ) ( 1st ` x ) = C ) ) |