This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function with removed elements is still a function. (Contributed by AV, 7-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fundif | |- ( Fun F -> Fun ( F \ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldif | |- ( Rel F -> Rel ( F \ A ) ) |
|
| 2 | brdif | |- ( x ( F \ A ) y <-> ( x F y /\ -. x A y ) ) |
|
| 3 | brdif | |- ( x ( F \ A ) z <-> ( x F z /\ -. x A z ) ) |
|
| 4 | pm2.27 | |- ( ( x F y /\ x F z ) -> ( ( ( x F y /\ x F z ) -> y = z ) -> y = z ) ) |
|
| 5 | 4 | ad2ant2r | |- ( ( ( x F y /\ -. x A y ) /\ ( x F z /\ -. x A z ) ) -> ( ( ( x F y /\ x F z ) -> y = z ) -> y = z ) ) |
| 6 | 2 3 5 | syl2anb | |- ( ( x ( F \ A ) y /\ x ( F \ A ) z ) -> ( ( ( x F y /\ x F z ) -> y = z ) -> y = z ) ) |
| 7 | 6 | com12 | |- ( ( ( x F y /\ x F z ) -> y = z ) -> ( ( x ( F \ A ) y /\ x ( F \ A ) z ) -> y = z ) ) |
| 8 | 7 | alimi | |- ( A. z ( ( x F y /\ x F z ) -> y = z ) -> A. z ( ( x ( F \ A ) y /\ x ( F \ A ) z ) -> y = z ) ) |
| 9 | 8 | 2alimi | |- ( A. x A. y A. z ( ( x F y /\ x F z ) -> y = z ) -> A. x A. y A. z ( ( x ( F \ A ) y /\ x ( F \ A ) z ) -> y = z ) ) |
| 10 | 1 9 | anim12i | |- ( ( Rel F /\ A. x A. y A. z ( ( x F y /\ x F z ) -> y = z ) ) -> ( Rel ( F \ A ) /\ A. x A. y A. z ( ( x ( F \ A ) y /\ x ( F \ A ) z ) -> y = z ) ) ) |
| 11 | dffun2 | |- ( Fun F <-> ( Rel F /\ A. x A. y A. z ( ( x F y /\ x F z ) -> y = z ) ) ) |
|
| 12 | dffun2 | |- ( Fun ( F \ A ) <-> ( Rel ( F \ A ) /\ A. x A. y A. z ( ( x ( F \ A ) y /\ x ( F \ A ) z ) -> y = z ) ) ) |
|
| 13 | 10 11 12 | 3imtr4i | |- ( Fun F -> Fun ( F \ A ) ) |