This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the functor to the trivial category. The converse is also true because F would be the empty set if C were not a category; and the empty set cannot equal an ordered pair of two sets. (Contributed by Zhi Wang, 22-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcsetc1o.1 | ⊢ 1 = ( SetCat ‘ 1o ) | |
| funcsetc1o.f | ⊢ 𝐹 = ( ( 1st ‘ ( 1 Δfunc 𝐶 ) ) ‘ ∅ ) | ||
| funcsetc1o.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| funcsetc1o.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| funcsetc1o.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| Assertion | funcsetc1o | ⊢ ( 𝜑 → 𝐹 = 〈 ( 𝐵 × 1o ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × 1o ) ) 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsetc1o.1 | ⊢ 1 = ( SetCat ‘ 1o ) | |
| 2 | funcsetc1o.f | ⊢ 𝐹 = ( ( 1st ‘ ( 1 Δfunc 𝐶 ) ) ‘ ∅ ) | |
| 3 | funcsetc1o.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | funcsetc1o.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 5 | funcsetc1o.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 6 | eqid | ⊢ ( 1 Δfunc 𝐶 ) = ( 1 Δfunc 𝐶 ) | |
| 7 | setc1oterm | ⊢ ( SetCat ‘ 1o ) ∈ TermCat | |
| 8 | 1 7 | eqeltri | ⊢ 1 ∈ TermCat |
| 9 | 8 | a1i | ⊢ ( 𝜑 → 1 ∈ TermCat ) |
| 10 | 9 | termccd | ⊢ ( 𝜑 → 1 ∈ Cat ) |
| 11 | 1 | setc1obas | ⊢ 1o = ( Base ‘ 1 ) |
| 12 | 0lt1o | ⊢ ∅ ∈ 1o | |
| 13 | 12 | a1i | ⊢ ( 𝜑 → ∅ ∈ 1o ) |
| 14 | eqid | ⊢ ( Id ‘ 1 ) = ( Id ‘ 1 ) | |
| 15 | 6 10 3 11 13 2 4 5 14 | diag1a | ⊢ ( 𝜑 → 𝐹 = 〈 ( 𝐵 × { ∅ } ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × { ( ( Id ‘ 1 ) ‘ ∅ ) } ) ) 〉 ) |
| 16 | df1o2 | ⊢ 1o = { ∅ } | |
| 17 | 16 | xpeq2i | ⊢ ( 𝐵 × 1o ) = ( 𝐵 × { ∅ } ) |
| 18 | 1 14 | setc1oid | ⊢ ( ( Id ‘ 1 ) ‘ ∅ ) = ∅ |
| 19 | 18 | sneqi | ⊢ { ( ( Id ‘ 1 ) ‘ ∅ ) } = { ∅ } |
| 20 | 16 19 | eqtr4i | ⊢ 1o = { ( ( Id ‘ 1 ) ‘ ∅ ) } |
| 21 | 20 | xpeq2i | ⊢ ( ( 𝑥 𝐻 𝑦 ) × 1o ) = ( ( 𝑥 𝐻 𝑦 ) × { ( ( Id ‘ 1 ) ‘ ∅ ) } ) |
| 22 | 21 | a1i | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 𝐻 𝑦 ) × 1o ) = ( ( 𝑥 𝐻 𝑦 ) × { ( ( Id ‘ 1 ) ‘ ∅ ) } ) ) |
| 23 | 22 | mpoeq3ia | ⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × 1o ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × { ( ( Id ‘ 1 ) ‘ ∅ ) } ) ) |
| 24 | 17 23 | opeq12i | ⊢ 〈 ( 𝐵 × 1o ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × 1o ) ) 〉 = 〈 ( 𝐵 × { ∅ } ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × { ( ( Id ‘ 1 ) ‘ ∅ ) } ) ) 〉 |
| 25 | 15 24 | eqtr4di | ⊢ ( 𝜑 → 𝐹 = 〈 ( 𝐵 × 1o ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × 1o ) ) 〉 ) |