This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the functor to the trivial category. The converse is also true because F would be the empty set if C were not a category; and the empty set cannot equal an ordered pair of two sets. (Contributed by Zhi Wang, 22-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcsetc1o.1 | |- .1. = ( SetCat ` 1o ) |
|
| funcsetc1o.f | |- F = ( ( 1st ` ( .1. DiagFunc C ) ) ` (/) ) |
||
| funcsetc1o.c | |- ( ph -> C e. Cat ) |
||
| funcsetc1o.b | |- B = ( Base ` C ) |
||
| funcsetc1o.h | |- H = ( Hom ` C ) |
||
| Assertion | funcsetc1o | |- ( ph -> F = <. ( B X. 1o ) , ( x e. B , y e. B |-> ( ( x H y ) X. 1o ) ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsetc1o.1 | |- .1. = ( SetCat ` 1o ) |
|
| 2 | funcsetc1o.f | |- F = ( ( 1st ` ( .1. DiagFunc C ) ) ` (/) ) |
|
| 3 | funcsetc1o.c | |- ( ph -> C e. Cat ) |
|
| 4 | funcsetc1o.b | |- B = ( Base ` C ) |
|
| 5 | funcsetc1o.h | |- H = ( Hom ` C ) |
|
| 6 | eqid | |- ( .1. DiagFunc C ) = ( .1. DiagFunc C ) |
|
| 7 | setc1oterm | |- ( SetCat ` 1o ) e. TermCat |
|
| 8 | 1 7 | eqeltri | |- .1. e. TermCat |
| 9 | 8 | a1i | |- ( ph -> .1. e. TermCat ) |
| 10 | 9 | termccd | |- ( ph -> .1. e. Cat ) |
| 11 | 1 | setc1obas | |- 1o = ( Base ` .1. ) |
| 12 | 0lt1o | |- (/) e. 1o |
|
| 13 | 12 | a1i | |- ( ph -> (/) e. 1o ) |
| 14 | eqid | |- ( Id ` .1. ) = ( Id ` .1. ) |
|
| 15 | 6 10 3 11 13 2 4 5 14 | diag1a | |- ( ph -> F = <. ( B X. { (/) } ) , ( x e. B , y e. B |-> ( ( x H y ) X. { ( ( Id ` .1. ) ` (/) ) } ) ) >. ) |
| 16 | df1o2 | |- 1o = { (/) } |
|
| 17 | 16 | xpeq2i | |- ( B X. 1o ) = ( B X. { (/) } ) |
| 18 | 1 14 | setc1oid | |- ( ( Id ` .1. ) ` (/) ) = (/) |
| 19 | 18 | sneqi | |- { ( ( Id ` .1. ) ` (/) ) } = { (/) } |
| 20 | 16 19 | eqtr4i | |- 1o = { ( ( Id ` .1. ) ` (/) ) } |
| 21 | 20 | xpeq2i | |- ( ( x H y ) X. 1o ) = ( ( x H y ) X. { ( ( Id ` .1. ) ` (/) ) } ) |
| 22 | 21 | a1i | |- ( ( x e. B /\ y e. B ) -> ( ( x H y ) X. 1o ) = ( ( x H y ) X. { ( ( Id ` .1. ) ` (/) ) } ) ) |
| 23 | 22 | mpoeq3ia | |- ( x e. B , y e. B |-> ( ( x H y ) X. 1o ) ) = ( x e. B , y e. B |-> ( ( x H y ) X. { ( ( Id ` .1. ) ` (/) ) } ) ) |
| 24 | 17 23 | opeq12i | |- <. ( B X. 1o ) , ( x e. B , y e. B |-> ( ( x H y ) X. 1o ) ) >. = <. ( B X. { (/) } ) , ( x e. B , y e. B |-> ( ( x H y ) X. { ( ( Id ` .1. ) ` (/) ) } ) ) >. |
| 25 | 15 24 | eqtr4di | |- ( ph -> F = <. ( B X. 1o ) , ( x e. B , y e. B |-> ( ( x H y ) X. 1o ) ) >. ) |