This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition showing a class is single-rooted. (See funcnv ). (Contributed by NM, 26-May-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funcnv3 | ⊢ ( Fun ◡ 𝐴 ↔ ∀ 𝑦 ∈ ran 𝐴 ∃! 𝑥 ∈ dom 𝐴 𝑥 𝐴 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrn2 | ⊢ ran 𝐴 = { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 } | |
| 2 | 1 | eqabri | ⊢ ( 𝑦 ∈ ran 𝐴 ↔ ∃ 𝑥 𝑥 𝐴 𝑦 ) |
| 3 | 2 | biimpi | ⊢ ( 𝑦 ∈ ran 𝐴 → ∃ 𝑥 𝑥 𝐴 𝑦 ) |
| 4 | 3 | biantrurd | ⊢ ( 𝑦 ∈ ran 𝐴 → ( ∃* 𝑥 𝑥 𝐴 𝑦 ↔ ( ∃ 𝑥 𝑥 𝐴 𝑦 ∧ ∃* 𝑥 𝑥 𝐴 𝑦 ) ) ) |
| 5 | 4 | ralbiia | ⊢ ( ∀ 𝑦 ∈ ran 𝐴 ∃* 𝑥 𝑥 𝐴 𝑦 ↔ ∀ 𝑦 ∈ ran 𝐴 ( ∃ 𝑥 𝑥 𝐴 𝑦 ∧ ∃* 𝑥 𝑥 𝐴 𝑦 ) ) |
| 6 | funcnv | ⊢ ( Fun ◡ 𝐴 ↔ ∀ 𝑦 ∈ ran 𝐴 ∃* 𝑥 𝑥 𝐴 𝑦 ) | |
| 7 | df-reu | ⊢ ( ∃! 𝑥 ∈ dom 𝐴 𝑥 𝐴 𝑦 ↔ ∃! 𝑥 ( 𝑥 ∈ dom 𝐴 ∧ 𝑥 𝐴 𝑦 ) ) | |
| 8 | vex | ⊢ 𝑥 ∈ V | |
| 9 | vex | ⊢ 𝑦 ∈ V | |
| 10 | 8 9 | breldm | ⊢ ( 𝑥 𝐴 𝑦 → 𝑥 ∈ dom 𝐴 ) |
| 11 | 10 | pm4.71ri | ⊢ ( 𝑥 𝐴 𝑦 ↔ ( 𝑥 ∈ dom 𝐴 ∧ 𝑥 𝐴 𝑦 ) ) |
| 12 | 11 | eubii | ⊢ ( ∃! 𝑥 𝑥 𝐴 𝑦 ↔ ∃! 𝑥 ( 𝑥 ∈ dom 𝐴 ∧ 𝑥 𝐴 𝑦 ) ) |
| 13 | df-eu | ⊢ ( ∃! 𝑥 𝑥 𝐴 𝑦 ↔ ( ∃ 𝑥 𝑥 𝐴 𝑦 ∧ ∃* 𝑥 𝑥 𝐴 𝑦 ) ) | |
| 14 | 7 12 13 | 3bitr2i | ⊢ ( ∃! 𝑥 ∈ dom 𝐴 𝑥 𝐴 𝑦 ↔ ( ∃ 𝑥 𝑥 𝐴 𝑦 ∧ ∃* 𝑥 𝑥 𝐴 𝑦 ) ) |
| 15 | 14 | ralbii | ⊢ ( ∀ 𝑦 ∈ ran 𝐴 ∃! 𝑥 ∈ dom 𝐴 𝑥 𝐴 𝑦 ↔ ∀ 𝑦 ∈ ran 𝐴 ( ∃ 𝑥 𝑥 𝐴 𝑦 ∧ ∃* 𝑥 𝑥 𝐴 𝑦 ) ) |
| 16 | 5 6 15 | 3bitr4i | ⊢ ( Fun ◡ 𝐴 ↔ ∀ 𝑦 ∈ ran 𝐴 ∃! 𝑥 ∈ dom 𝐴 𝑥 𝐴 𝑦 ) |