This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition showing a class is single-rooted. (See funcnv ). (Contributed by NM, 26-May-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funcnv3 | |- ( Fun `' A <-> A. y e. ran A E! x e. dom A x A y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrn2 | |- ran A = { y | E. x x A y } |
|
| 2 | 1 | eqabri | |- ( y e. ran A <-> E. x x A y ) |
| 3 | 2 | biimpi | |- ( y e. ran A -> E. x x A y ) |
| 4 | 3 | biantrurd | |- ( y e. ran A -> ( E* x x A y <-> ( E. x x A y /\ E* x x A y ) ) ) |
| 5 | 4 | ralbiia | |- ( A. y e. ran A E* x x A y <-> A. y e. ran A ( E. x x A y /\ E* x x A y ) ) |
| 6 | funcnv | |- ( Fun `' A <-> A. y e. ran A E* x x A y ) |
|
| 7 | df-reu | |- ( E! x e. dom A x A y <-> E! x ( x e. dom A /\ x A y ) ) |
|
| 8 | vex | |- x e. _V |
|
| 9 | vex | |- y e. _V |
|
| 10 | 8 9 | breldm | |- ( x A y -> x e. dom A ) |
| 11 | 10 | pm4.71ri | |- ( x A y <-> ( x e. dom A /\ x A y ) ) |
| 12 | 11 | eubii | |- ( E! x x A y <-> E! x ( x e. dom A /\ x A y ) ) |
| 13 | df-eu | |- ( E! x x A y <-> ( E. x x A y /\ E* x x A y ) ) |
|
| 14 | 7 12 13 | 3bitr2i | |- ( E! x e. dom A x A y <-> ( E. x x A y /\ E* x x A y ) ) |
| 15 | 14 | ralbii | |- ( A. y e. ran A E! x e. dom A x A y <-> A. y e. ran A ( E. x x A y /\ E* x x A y ) ) |
| 16 | 5 6 15 | 3bitr4i | |- ( Fun `' A <-> A. y e. ran A E! x e. dom A x A y ) |