This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Our definition of the function predicate df-funALTV (based on a more general, converse reflexive, relation) and the original definition of function in set.mm df-fun , are always the same and interchangeable. (Contributed by Peter Mazsa, 27-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funALTVfun | ⊢ ( FunALTV 𝐹 ↔ Fun 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvrefrelcoss2 | ⊢ ( CnvRefRel ≀ 𝐹 ↔ ≀ 𝐹 ⊆ I ) | |
| 2 | dfcoss3 | ⊢ ≀ 𝐹 = ( 𝐹 ∘ ◡ 𝐹 ) | |
| 3 | 2 | sseq1i | ⊢ ( ≀ 𝐹 ⊆ I ↔ ( 𝐹 ∘ ◡ 𝐹 ) ⊆ I ) |
| 4 | 1 3 | bitri | ⊢ ( CnvRefRel ≀ 𝐹 ↔ ( 𝐹 ∘ ◡ 𝐹 ) ⊆ I ) |
| 5 | 4 | anbi2ci | ⊢ ( ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹 ) ↔ ( Rel 𝐹 ∧ ( 𝐹 ∘ ◡ 𝐹 ) ⊆ I ) ) |
| 6 | df-funALTV | ⊢ ( FunALTV 𝐹 ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹 ) ) | |
| 7 | df-fun | ⊢ ( Fun 𝐹 ↔ ( Rel 𝐹 ∧ ( 𝐹 ∘ ◡ 𝐹 ) ⊆ I ) ) | |
| 8 | 5 6 7 | 3bitr4i | ⊢ ( FunALTV 𝐹 ↔ Fun 𝐹 ) |