This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Functions
funALTVfun
Metamath Proof Explorer
Description: Our definition of the function predicate df-funALTV (based on a more
general, converse reflexive, relation) and the original definition of
function in set.mm df-fun , are always the same and interchangeable.
(Contributed by Peter Mazsa , 27-Jul-2021)
Ref
Expression
Assertion
funALTVfun
⊢ FunALTV F ↔ Fun ⁡ F
Proof
Step
Hyp
Ref
Expression
1
cnvrefrelcoss2
⊢ CnvRefRel ≀ F ↔ ≀ F ⊆ I
2
dfcoss3
⊢ ≀ F = F ∘ F -1
3
2
sseq1i
⊢ ≀ F ⊆ I ↔ F ∘ F -1 ⊆ I
4
1 3
bitri
⊢ CnvRefRel ≀ F ↔ F ∘ F -1 ⊆ I
5
4
anbi2ci
⊢ CnvRefRel ≀ F ∧ Rel ⁡ F ↔ Rel ⁡ F ∧ F ∘ F -1 ⊆ I
6
df-funALTV
⊢ FunALTV F ↔ CnvRefRel ≀ F ∧ Rel ⁡ F
7
df-fun
⊢ Fun ⁡ F ↔ Rel ⁡ F ∧ F ∘ F -1 ⊆ I
8
5 6 7
3bitr4i
⊢ FunALTV F ↔ Fun ⁡ F