This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function with a domain containing (at least) two different elements is not an ordered pair. This stronger version of fun2dmnop (with the less restrictive requirement that ( G \ { (/) } ) needs to be a function instead of G ) is useful for proofs for extensible structures, see structn0fun . (Contributed by AV, 21-Sep-2020) (Revised by AV, 7-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fun2dmnop.a | ⊢ 𝐴 ∈ V | |
| fun2dmnop.b | ⊢ 𝐵 ∈ V | ||
| Assertion | fun2dmnop0 | ⊢ ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 𝐴 ≠ 𝐵 ∧ { 𝐴 , 𝐵 } ⊆ dom 𝐺 ) → ¬ 𝐺 ∈ ( V × V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fun2dmnop.a | ⊢ 𝐴 ∈ V | |
| 2 | fun2dmnop.b | ⊢ 𝐵 ∈ V | |
| 3 | simpl1 | ⊢ ( ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 𝐴 ≠ 𝐵 ∧ { 𝐴 , 𝐵 } ⊆ dom 𝐺 ) ∧ 𝐺 ∈ V ) → Fun ( 𝐺 ∖ { ∅ } ) ) | |
| 4 | dmexg | ⊢ ( 𝐺 ∈ V → dom 𝐺 ∈ V ) | |
| 5 | 4 | adantl | ⊢ ( ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 𝐴 ≠ 𝐵 ∧ { 𝐴 , 𝐵 } ⊆ dom 𝐺 ) ∧ 𝐺 ∈ V ) → dom 𝐺 ∈ V ) |
| 6 | 1 2 | prss | ⊢ ( ( 𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺 ) ↔ { 𝐴 , 𝐵 } ⊆ dom 𝐺 ) |
| 7 | simpl | ⊢ ( ( 𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺 ) → 𝐴 ∈ dom 𝐺 ) | |
| 8 | 6 7 | sylbir | ⊢ ( { 𝐴 , 𝐵 } ⊆ dom 𝐺 → 𝐴 ∈ dom 𝐺 ) |
| 9 | 8 | 3ad2ant3 | ⊢ ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 𝐴 ≠ 𝐵 ∧ { 𝐴 , 𝐵 } ⊆ dom 𝐺 ) → 𝐴 ∈ dom 𝐺 ) |
| 10 | 9 | adantr | ⊢ ( ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 𝐴 ≠ 𝐵 ∧ { 𝐴 , 𝐵 } ⊆ dom 𝐺 ) ∧ 𝐺 ∈ V ) → 𝐴 ∈ dom 𝐺 ) |
| 11 | simpr | ⊢ ( ( 𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺 ) → 𝐵 ∈ dom 𝐺 ) | |
| 12 | 6 11 | sylbir | ⊢ ( { 𝐴 , 𝐵 } ⊆ dom 𝐺 → 𝐵 ∈ dom 𝐺 ) |
| 13 | 12 | 3ad2ant3 | ⊢ ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 𝐴 ≠ 𝐵 ∧ { 𝐴 , 𝐵 } ⊆ dom 𝐺 ) → 𝐵 ∈ dom 𝐺 ) |
| 14 | 13 | adantr | ⊢ ( ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 𝐴 ≠ 𝐵 ∧ { 𝐴 , 𝐵 } ⊆ dom 𝐺 ) ∧ 𝐺 ∈ V ) → 𝐵 ∈ dom 𝐺 ) |
| 15 | simpl2 | ⊢ ( ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 𝐴 ≠ 𝐵 ∧ { 𝐴 , 𝐵 } ⊆ dom 𝐺 ) ∧ 𝐺 ∈ V ) → 𝐴 ≠ 𝐵 ) | |
| 16 | 5 10 14 15 | nehash2 | ⊢ ( ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 𝐴 ≠ 𝐵 ∧ { 𝐴 , 𝐵 } ⊆ dom 𝐺 ) ∧ 𝐺 ∈ V ) → 2 ≤ ( ♯ ‘ dom 𝐺 ) ) |
| 17 | fundmge2nop0 | ⊢ ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 2 ≤ ( ♯ ‘ dom 𝐺 ) ) → ¬ 𝐺 ∈ ( V × V ) ) | |
| 18 | 3 16 17 | syl2anc | ⊢ ( ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 𝐴 ≠ 𝐵 ∧ { 𝐴 , 𝐵 } ⊆ dom 𝐺 ) ∧ 𝐺 ∈ V ) → ¬ 𝐺 ∈ ( V × V ) ) |
| 19 | 18 | ex | ⊢ ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 𝐴 ≠ 𝐵 ∧ { 𝐴 , 𝐵 } ⊆ dom 𝐺 ) → ( 𝐺 ∈ V → ¬ 𝐺 ∈ ( V × V ) ) ) |
| 20 | prcnel | ⊢ ( ¬ 𝐺 ∈ V → ¬ 𝐺 ∈ ( V × V ) ) | |
| 21 | 19 20 | pm2.61d1 | ⊢ ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 𝐴 ≠ 𝐵 ∧ { 𝐴 , 𝐵 } ⊆ dom 𝐺 ) → ¬ 𝐺 ∈ ( V × V ) ) |