This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function with a domain containing (at least) two different elements is not an ordered pair. This stronger version of fun2dmnop (with the less restrictive requirement that ( G \ { (/) } ) needs to be a function instead of G ) is useful for proofs for extensible structures, see structn0fun . (Contributed by AV, 21-Sep-2020) (Revised by AV, 7-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fun2dmnop.a | |- A e. _V |
|
| fun2dmnop.b | |- B e. _V |
||
| Assertion | fun2dmnop0 | |- ( ( Fun ( G \ { (/) } ) /\ A =/= B /\ { A , B } C_ dom G ) -> -. G e. ( _V X. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fun2dmnop.a | |- A e. _V |
|
| 2 | fun2dmnop.b | |- B e. _V |
|
| 3 | simpl1 | |- ( ( ( Fun ( G \ { (/) } ) /\ A =/= B /\ { A , B } C_ dom G ) /\ G e. _V ) -> Fun ( G \ { (/) } ) ) |
|
| 4 | dmexg | |- ( G e. _V -> dom G e. _V ) |
|
| 5 | 4 | adantl | |- ( ( ( Fun ( G \ { (/) } ) /\ A =/= B /\ { A , B } C_ dom G ) /\ G e. _V ) -> dom G e. _V ) |
| 6 | 1 2 | prss | |- ( ( A e. dom G /\ B e. dom G ) <-> { A , B } C_ dom G ) |
| 7 | simpl | |- ( ( A e. dom G /\ B e. dom G ) -> A e. dom G ) |
|
| 8 | 6 7 | sylbir | |- ( { A , B } C_ dom G -> A e. dom G ) |
| 9 | 8 | 3ad2ant3 | |- ( ( Fun ( G \ { (/) } ) /\ A =/= B /\ { A , B } C_ dom G ) -> A e. dom G ) |
| 10 | 9 | adantr | |- ( ( ( Fun ( G \ { (/) } ) /\ A =/= B /\ { A , B } C_ dom G ) /\ G e. _V ) -> A e. dom G ) |
| 11 | simpr | |- ( ( A e. dom G /\ B e. dom G ) -> B e. dom G ) |
|
| 12 | 6 11 | sylbir | |- ( { A , B } C_ dom G -> B e. dom G ) |
| 13 | 12 | 3ad2ant3 | |- ( ( Fun ( G \ { (/) } ) /\ A =/= B /\ { A , B } C_ dom G ) -> B e. dom G ) |
| 14 | 13 | adantr | |- ( ( ( Fun ( G \ { (/) } ) /\ A =/= B /\ { A , B } C_ dom G ) /\ G e. _V ) -> B e. dom G ) |
| 15 | simpl2 | |- ( ( ( Fun ( G \ { (/) } ) /\ A =/= B /\ { A , B } C_ dom G ) /\ G e. _V ) -> A =/= B ) |
|
| 16 | 5 10 14 15 | nehash2 | |- ( ( ( Fun ( G \ { (/) } ) /\ A =/= B /\ { A , B } C_ dom G ) /\ G e. _V ) -> 2 <_ ( # ` dom G ) ) |
| 17 | fundmge2nop0 | |- ( ( Fun ( G \ { (/) } ) /\ 2 <_ ( # ` dom G ) ) -> -. G e. ( _V X. _V ) ) |
|
| 18 | 3 16 17 | syl2anc | |- ( ( ( Fun ( G \ { (/) } ) /\ A =/= B /\ { A , B } C_ dom G ) /\ G e. _V ) -> -. G e. ( _V X. _V ) ) |
| 19 | 18 | ex | |- ( ( Fun ( G \ { (/) } ) /\ A =/= B /\ { A , B } C_ dom G ) -> ( G e. _V -> -. G e. ( _V X. _V ) ) ) |
| 20 | prcnel | |- ( -. G e. _V -> -. G e. ( _V X. _V ) ) |
|
| 21 | 19 20 | pm2.61d1 | |- ( ( Fun ( G \ { (/) } ) /\ A =/= B /\ { A , B } C_ dom G ) -> -. G e. ( _V X. _V ) ) |