This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite category of functors is isomorphic to the category of opposite functors. (Contributed by Zhi Wang, 18-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fucoppccic.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| fucoppccic.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| fucoppccic.x | ⊢ 𝑋 = ( oppCat ‘ ( 𝐷 FuncCat 𝐸 ) ) | ||
| fucoppccic.y | ⊢ 𝑌 = ( ( oppCat ‘ 𝐷 ) FuncCat ( oppCat ‘ 𝐸 ) ) | ||
| fucoppccic.xb | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| fucoppccic.yb | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| fucoppccic.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | ||
| fucoppccic.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑊 ) | ||
| Assertion | fucoppccic | ⊢ ( 𝜑 → 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucoppccic.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| 2 | fucoppccic.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | fucoppccic.x | ⊢ 𝑋 = ( oppCat ‘ ( 𝐷 FuncCat 𝐸 ) ) | |
| 4 | fucoppccic.y | ⊢ 𝑌 = ( ( oppCat ‘ 𝐷 ) FuncCat ( oppCat ‘ 𝐸 ) ) | |
| 5 | fucoppccic.xb | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | fucoppccic.yb | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | fucoppccic.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | |
| 8 | fucoppccic.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑊 ) | |
| 9 | eqid | ⊢ ( Iso ‘ 𝐶 ) = ( Iso ‘ 𝐶 ) | |
| 10 | 1 2 | elbasfv | ⊢ ( 𝑋 ∈ 𝐵 → 𝑈 ∈ V ) |
| 11 | 1 | catccat | ⊢ ( 𝑈 ∈ V → 𝐶 ∈ Cat ) |
| 12 | 5 10 11 | 3syl | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 13 | eqid | ⊢ ( oppCat ‘ 𝐷 ) = ( oppCat ‘ 𝐷 ) | |
| 14 | eqid | ⊢ ( oppCat ‘ 𝐸 ) = ( oppCat ‘ 𝐸 ) | |
| 15 | eqid | ⊢ ( 𝐷 FuncCat 𝐸 ) = ( 𝐷 FuncCat 𝐸 ) | |
| 16 | eqid | ⊢ ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 ) | |
| 17 | eqidd | ⊢ ( 𝜑 → ( oppFunc ↾ ( 𝐷 Func 𝐸 ) ) = ( oppFunc ↾ ( 𝐷 Func 𝐸 ) ) ) | |
| 18 | eqidd | ⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐷 Func 𝐸 ) , 𝑔 ∈ ( 𝐷 Func 𝐸 ) ↦ ( I ↾ ( 𝑔 ( 𝐷 Nat 𝐸 ) 𝑓 ) ) ) = ( 𝑓 ∈ ( 𝐷 Func 𝐸 ) , 𝑔 ∈ ( 𝐷 Func 𝐸 ) ↦ ( I ↾ ( 𝑔 ( 𝐷 Nat 𝐸 ) 𝑓 ) ) ) ) | |
| 19 | 13 14 15 3 4 16 17 18 1 2 9 7 8 5 6 | fucoppc | ⊢ ( 𝜑 → ( oppFunc ↾ ( 𝐷 Func 𝐸 ) ) ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ( 𝑓 ∈ ( 𝐷 Func 𝐸 ) , 𝑔 ∈ ( 𝐷 Func 𝐸 ) ↦ ( I ↾ ( 𝑔 ( 𝐷 Nat 𝐸 ) 𝑓 ) ) ) ) |
| 20 | df-br | ⊢ ( ( oppFunc ↾ ( 𝐷 Func 𝐸 ) ) ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ( 𝑓 ∈ ( 𝐷 Func 𝐸 ) , 𝑔 ∈ ( 𝐷 Func 𝐸 ) ↦ ( I ↾ ( 𝑔 ( 𝐷 Nat 𝐸 ) 𝑓 ) ) ) ↔ 〈 ( oppFunc ↾ ( 𝐷 Func 𝐸 ) ) , ( 𝑓 ∈ ( 𝐷 Func 𝐸 ) , 𝑔 ∈ ( 𝐷 Func 𝐸 ) ↦ ( I ↾ ( 𝑔 ( 𝐷 Nat 𝐸 ) 𝑓 ) ) ) 〉 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) | |
| 21 | 19 20 | sylib | ⊢ ( 𝜑 → 〈 ( oppFunc ↾ ( 𝐷 Func 𝐸 ) ) , ( 𝑓 ∈ ( 𝐷 Func 𝐸 ) , 𝑔 ∈ ( 𝐷 Func 𝐸 ) ↦ ( I ↾ ( 𝑔 ( 𝐷 Nat 𝐸 ) 𝑓 ) ) ) 〉 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) |
| 22 | 9 2 12 5 6 21 | brcici | ⊢ ( 𝜑 → 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ) |