This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite category of functors is isomorphic to the category of opposite functors. (Contributed by Zhi Wang, 18-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fucoppccic.c | |- C = ( CatCat ` U ) |
|
| fucoppccic.b | |- B = ( Base ` C ) |
||
| fucoppccic.x | |- X = ( oppCat ` ( D FuncCat E ) ) |
||
| fucoppccic.y | |- Y = ( ( oppCat ` D ) FuncCat ( oppCat ` E ) ) |
||
| fucoppccic.xb | |- ( ph -> X e. B ) |
||
| fucoppccic.yb | |- ( ph -> Y e. B ) |
||
| fucoppccic.d | |- ( ph -> D e. V ) |
||
| fucoppccic.e | |- ( ph -> E e. W ) |
||
| Assertion | fucoppccic | |- ( ph -> X ( ~=c ` C ) Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucoppccic.c | |- C = ( CatCat ` U ) |
|
| 2 | fucoppccic.b | |- B = ( Base ` C ) |
|
| 3 | fucoppccic.x | |- X = ( oppCat ` ( D FuncCat E ) ) |
|
| 4 | fucoppccic.y | |- Y = ( ( oppCat ` D ) FuncCat ( oppCat ` E ) ) |
|
| 5 | fucoppccic.xb | |- ( ph -> X e. B ) |
|
| 6 | fucoppccic.yb | |- ( ph -> Y e. B ) |
|
| 7 | fucoppccic.d | |- ( ph -> D e. V ) |
|
| 8 | fucoppccic.e | |- ( ph -> E e. W ) |
|
| 9 | eqid | |- ( Iso ` C ) = ( Iso ` C ) |
|
| 10 | 1 2 | elbasfv | |- ( X e. B -> U e. _V ) |
| 11 | 1 | catccat | |- ( U e. _V -> C e. Cat ) |
| 12 | 5 10 11 | 3syl | |- ( ph -> C e. Cat ) |
| 13 | eqid | |- ( oppCat ` D ) = ( oppCat ` D ) |
|
| 14 | eqid | |- ( oppCat ` E ) = ( oppCat ` E ) |
|
| 15 | eqid | |- ( D FuncCat E ) = ( D FuncCat E ) |
|
| 16 | eqid | |- ( D Nat E ) = ( D Nat E ) |
|
| 17 | eqidd | |- ( ph -> ( oppFunc |` ( D Func E ) ) = ( oppFunc |` ( D Func E ) ) ) |
|
| 18 | eqidd | |- ( ph -> ( f e. ( D Func E ) , g e. ( D Func E ) |-> ( _I |` ( g ( D Nat E ) f ) ) ) = ( f e. ( D Func E ) , g e. ( D Func E ) |-> ( _I |` ( g ( D Nat E ) f ) ) ) ) |
|
| 19 | 13 14 15 3 4 16 17 18 1 2 9 7 8 5 6 | fucoppc | |- ( ph -> ( oppFunc |` ( D Func E ) ) ( X ( Iso ` C ) Y ) ( f e. ( D Func E ) , g e. ( D Func E ) |-> ( _I |` ( g ( D Nat E ) f ) ) ) ) |
| 20 | df-br | |- ( ( oppFunc |` ( D Func E ) ) ( X ( Iso ` C ) Y ) ( f e. ( D Func E ) , g e. ( D Func E ) |-> ( _I |` ( g ( D Nat E ) f ) ) ) <-> <. ( oppFunc |` ( D Func E ) ) , ( f e. ( D Func E ) , g e. ( D Func E ) |-> ( _I |` ( g ( D Nat E ) f ) ) ) >. e. ( X ( Iso ` C ) Y ) ) |
|
| 21 | 19 20 | sylib | |- ( ph -> <. ( oppFunc |` ( D Func E ) ) , ( f e. ( D Func E ) , g e. ( D Func E ) |-> ( _I |` ( g ( D Nat E ) f ) ) ) >. e. ( X ( Iso ` C ) Y ) ) |
| 22 | 9 2 12 5 6 21 | brcici | |- ( ph -> X ( ~=c ` C ) Y ) |