This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for a faithful functor to also be a faithful functor into the restriction. (Contributed by Mario Carneiro, 30-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fthres2c.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| fthres2c.e | ⊢ 𝐸 = ( 𝐷 ↾s 𝑆 ) | ||
| fthres2c.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| fthres2c.r | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| fthres2c.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | ||
| Assertion | fthres2c | ⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ↔ 𝐹 ( 𝐶 Faith 𝐸 ) 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fthres2c.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| 2 | fthres2c.e | ⊢ 𝐸 = ( 𝐷 ↾s 𝑆 ) | |
| 3 | fthres2c.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 4 | fthres2c.r | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 5 | fthres2c.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | |
| 6 | 1 2 3 4 5 | funcres2c | ⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) |
| 7 | 6 | anbi1d | ⊢ ( 𝜑 → ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ↔ ( 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ) ) |
| 8 | 1 | isfth | ⊢ ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ) |
| 9 | 1 | isfth | ⊢ ( 𝐹 ( 𝐶 Faith 𝐸 ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ) |
| 10 | 7 8 9 | 3bitr4g | ⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ↔ 𝐹 ( 𝐶 Faith 𝐸 ) 𝐺 ) ) |