This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for a faithful functor to also be a faithful functor into the restriction. (Contributed by Mario Carneiro, 30-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fthres2c.a | |- A = ( Base ` C ) |
|
| fthres2c.e | |- E = ( D |`s S ) |
||
| fthres2c.d | |- ( ph -> D e. Cat ) |
||
| fthres2c.r | |- ( ph -> S e. V ) |
||
| fthres2c.1 | |- ( ph -> F : A --> S ) |
||
| Assertion | fthres2c | |- ( ph -> ( F ( C Faith D ) G <-> F ( C Faith E ) G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fthres2c.a | |- A = ( Base ` C ) |
|
| 2 | fthres2c.e | |- E = ( D |`s S ) |
|
| 3 | fthres2c.d | |- ( ph -> D e. Cat ) |
|
| 4 | fthres2c.r | |- ( ph -> S e. V ) |
|
| 5 | fthres2c.1 | |- ( ph -> F : A --> S ) |
|
| 6 | 1 2 3 4 5 | funcres2c | |- ( ph -> ( F ( C Func D ) G <-> F ( C Func E ) G ) ) |
| 7 | 6 | anbi1d | |- ( ph -> ( ( F ( C Func D ) G /\ A. x e. A A. y e. A Fun `' ( x G y ) ) <-> ( F ( C Func E ) G /\ A. x e. A A. y e. A Fun `' ( x G y ) ) ) ) |
| 8 | 1 | isfth | |- ( F ( C Faith D ) G <-> ( F ( C Func D ) G /\ A. x e. A A. y e. A Fun `' ( x G y ) ) ) |
| 9 | 1 | isfth | |- ( F ( C Faith E ) G <-> ( F ( C Func E ) G /\ A. x e. A A. y e. A Fun `' ( x G y ) ) ) |
| 10 | 7 8 9 | 3bitr4g | |- ( ph -> ( F ( C Faith D ) G <-> F ( C Faith E ) G ) ) |