This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elements of the free module are mappings with two arguments defined by their operation values. (Contributed by AV, 20-Feb-2019) (Proof shortened by AV, 3-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpofrlmd.f | ⊢ 𝐹 = ( 𝑅 freeLMod ( 𝑁 × 𝑀 ) ) | |
| mpofrlmd.v | ⊢ 𝑉 = ( Base ‘ 𝐹 ) | ||
| mpofrlmd.s | ⊢ ( ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) → 𝐴 = 𝐵 ) | ||
| mpofrlmd.a | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑀 ) → 𝐴 ∈ 𝑋 ) | ||
| mpofrlmd.b | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑀 ) → 𝐵 ∈ 𝑌 ) | ||
| mpofrlmd.e | ⊢ ( 𝜑 → ( 𝑁 ∈ 𝑈 ∧ 𝑀 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ) | ||
| Assertion | mpofrlmd | ⊢ ( 𝜑 → ( 𝑍 = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑀 ↦ 𝐵 ) ↔ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑀 ( 𝑖 𝑍 𝑗 ) = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpofrlmd.f | ⊢ 𝐹 = ( 𝑅 freeLMod ( 𝑁 × 𝑀 ) ) | |
| 2 | mpofrlmd.v | ⊢ 𝑉 = ( Base ‘ 𝐹 ) | |
| 3 | mpofrlmd.s | ⊢ ( ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) → 𝐴 = 𝐵 ) | |
| 4 | mpofrlmd.a | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑀 ) → 𝐴 ∈ 𝑋 ) | |
| 5 | mpofrlmd.b | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑀 ) → 𝐵 ∈ 𝑌 ) | |
| 6 | mpofrlmd.e | ⊢ ( 𝜑 → ( 𝑁 ∈ 𝑈 ∧ 𝑀 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ) | |
| 7 | xpexg | ⊢ ( ( 𝑁 ∈ 𝑈 ∧ 𝑀 ∈ 𝑊 ) → ( 𝑁 × 𝑀 ) ∈ V ) | |
| 8 | 7 | anim1i | ⊢ ( ( ( 𝑁 ∈ 𝑈 ∧ 𝑀 ∈ 𝑊 ) ∧ 𝑍 ∈ 𝑉 ) → ( ( 𝑁 × 𝑀 ) ∈ V ∧ 𝑍 ∈ 𝑉 ) ) |
| 9 | 8 | 3impa | ⊢ ( ( 𝑁 ∈ 𝑈 ∧ 𝑀 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) → ( ( 𝑁 × 𝑀 ) ∈ V ∧ 𝑍 ∈ 𝑉 ) ) |
| 10 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 11 | 1 10 2 | frlmbasf | ⊢ ( ( ( 𝑁 × 𝑀 ) ∈ V ∧ 𝑍 ∈ 𝑉 ) → 𝑍 : ( 𝑁 × 𝑀 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 12 | ffn | ⊢ ( 𝑍 : ( 𝑁 × 𝑀 ) ⟶ ( Base ‘ 𝑅 ) → 𝑍 Fn ( 𝑁 × 𝑀 ) ) | |
| 13 | 6 9 11 12 | 4syl | ⊢ ( 𝜑 → 𝑍 Fn ( 𝑁 × 𝑀 ) ) |
| 14 | 13 3 4 5 | fnmpoovd | ⊢ ( 𝜑 → ( 𝑍 = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑀 ↦ 𝐵 ) ↔ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑀 ( 𝑖 𝑍 𝑗 ) = 𝐴 ) ) |