This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Well-Founded Induction Schema. If a property passes from all elements less than y of a well-founded class A to y itself (induction hypothesis), then the property holds for all elements of A . Theorem 5.6(ii) of Levy p. 64. (Contributed by Scott Fenton, 7-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frinsg.1 | ⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) [ 𝑧 / 𝑦 ] 𝜑 → 𝜑 ) ) | |
| Assertion | frinsg | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑦 ∈ 𝐴 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frinsg.1 | ⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) [ 𝑧 / 𝑦 ] 𝜑 → 𝜑 ) ) | |
| 2 | ssrab2 | ⊢ { 𝑦 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐴 | |
| 3 | dfss3 | ⊢ ( Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ { 𝑦 ∈ 𝐴 ∣ 𝜑 } ↔ ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) 𝑧 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } ) | |
| 4 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
| 5 | 4 | elrabsf | ⊢ ( 𝑧 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } ↔ ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑦 ] 𝜑 ) ) |
| 6 | 5 | simprbi | ⊢ ( 𝑧 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } → [ 𝑧 / 𝑦 ] 𝜑 ) |
| 7 | 6 | ralimi | ⊢ ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) 𝑧 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } → ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) [ 𝑧 / 𝑦 ] 𝜑 ) |
| 8 | 3 7 | sylbi | ⊢ ( Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ { 𝑦 ∈ 𝐴 ∣ 𝜑 } → ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) [ 𝑧 / 𝑦 ] 𝜑 ) |
| 9 | nfv | ⊢ Ⅎ 𝑦 𝑤 ∈ 𝐴 | |
| 10 | nfcv | ⊢ Ⅎ 𝑦 Pred ( 𝑅 , 𝐴 , 𝑤 ) | |
| 11 | nfsbc1v | ⊢ Ⅎ 𝑦 [ 𝑧 / 𝑦 ] 𝜑 | |
| 12 | 10 11 | nfralw | ⊢ Ⅎ 𝑦 ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) [ 𝑧 / 𝑦 ] 𝜑 |
| 13 | nfsbc1v | ⊢ Ⅎ 𝑦 [ 𝑤 / 𝑦 ] 𝜑 | |
| 14 | 12 13 | nfim | ⊢ Ⅎ 𝑦 ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) [ 𝑧 / 𝑦 ] 𝜑 → [ 𝑤 / 𝑦 ] 𝜑 ) |
| 15 | 9 14 | nfim | ⊢ Ⅎ 𝑦 ( 𝑤 ∈ 𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) [ 𝑧 / 𝑦 ] 𝜑 → [ 𝑤 / 𝑦 ] 𝜑 ) ) |
| 16 | eleq1w | ⊢ ( 𝑦 = 𝑤 → ( 𝑦 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) | |
| 17 | predeq3 | ⊢ ( 𝑦 = 𝑤 → Pred ( 𝑅 , 𝐴 , 𝑦 ) = Pred ( 𝑅 , 𝐴 , 𝑤 ) ) | |
| 18 | 17 | raleqdv | ⊢ ( 𝑦 = 𝑤 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) [ 𝑧 / 𝑦 ] 𝜑 ↔ ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) [ 𝑧 / 𝑦 ] 𝜑 ) ) |
| 19 | sbceq1a | ⊢ ( 𝑦 = 𝑤 → ( 𝜑 ↔ [ 𝑤 / 𝑦 ] 𝜑 ) ) | |
| 20 | 18 19 | imbi12d | ⊢ ( 𝑦 = 𝑤 → ( ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) [ 𝑧 / 𝑦 ] 𝜑 → 𝜑 ) ↔ ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) [ 𝑧 / 𝑦 ] 𝜑 → [ 𝑤 / 𝑦 ] 𝜑 ) ) ) |
| 21 | 16 20 | imbi12d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑦 ∈ 𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) [ 𝑧 / 𝑦 ] 𝜑 → 𝜑 ) ) ↔ ( 𝑤 ∈ 𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) [ 𝑧 / 𝑦 ] 𝜑 → [ 𝑤 / 𝑦 ] 𝜑 ) ) ) ) |
| 22 | 15 21 1 | chvarfv | ⊢ ( 𝑤 ∈ 𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) [ 𝑧 / 𝑦 ] 𝜑 → [ 𝑤 / 𝑦 ] 𝜑 ) ) |
| 23 | 8 22 | syl5 | ⊢ ( 𝑤 ∈ 𝐴 → ( Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ { 𝑦 ∈ 𝐴 ∣ 𝜑 } → [ 𝑤 / 𝑦 ] 𝜑 ) ) |
| 24 | 23 | anc2li | ⊢ ( 𝑤 ∈ 𝐴 → ( Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ { 𝑦 ∈ 𝐴 ∣ 𝜑 } → ( 𝑤 ∈ 𝐴 ∧ [ 𝑤 / 𝑦 ] 𝜑 ) ) ) |
| 25 | 4 | elrabsf | ⊢ ( 𝑤 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } ↔ ( 𝑤 ∈ 𝐴 ∧ [ 𝑤 / 𝑦 ] 𝜑 ) ) |
| 26 | 24 25 | imbitrrdi | ⊢ ( 𝑤 ∈ 𝐴 → ( Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ { 𝑦 ∈ 𝐴 ∣ 𝜑 } → 𝑤 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } ) ) |
| 27 | 26 | rgen | ⊢ ∀ 𝑤 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ { 𝑦 ∈ 𝐴 ∣ 𝜑 } → 𝑤 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } ) |
| 28 | frind | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( { 𝑦 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ { 𝑦 ∈ 𝐴 ∣ 𝜑 } → 𝑤 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } ) ) ) → 𝐴 = { 𝑦 ∈ 𝐴 ∣ 𝜑 } ) | |
| 29 | 2 27 28 | mpanr12 | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝐴 = { 𝑦 ∈ 𝐴 ∣ 𝜑 } ) |
| 30 | rabid2 | ⊢ ( 𝐴 = { 𝑦 ∈ 𝐴 ∣ 𝜑 } ↔ ∀ 𝑦 ∈ 𝐴 𝜑 ) | |
| 31 | 29 30 | sylib | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑦 ∈ 𝐴 𝜑 ) |