This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Well-Founded Induction Schema. If a property passes from all elements less than y of a well-founded class A to y itself (induction hypothesis), then the property holds for all elements of A . Theorem 5.6(ii) of Levy p. 64. (Contributed by Scott Fenton, 7-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frinsg.1 | |- ( y e. A -> ( A. z e. Pred ( R , A , y ) [. z / y ]. ph -> ph ) ) |
|
| Assertion | frinsg | |- ( ( R Fr A /\ R Se A ) -> A. y e. A ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frinsg.1 | |- ( y e. A -> ( A. z e. Pred ( R , A , y ) [. z / y ]. ph -> ph ) ) |
|
| 2 | ssrab2 | |- { y e. A | ph } C_ A |
|
| 3 | dfss3 | |- ( Pred ( R , A , w ) C_ { y e. A | ph } <-> A. z e. Pred ( R , A , w ) z e. { y e. A | ph } ) |
|
| 4 | nfcv | |- F/_ y A |
|
| 5 | 4 | elrabsf | |- ( z e. { y e. A | ph } <-> ( z e. A /\ [. z / y ]. ph ) ) |
| 6 | 5 | simprbi | |- ( z e. { y e. A | ph } -> [. z / y ]. ph ) |
| 7 | 6 | ralimi | |- ( A. z e. Pred ( R , A , w ) z e. { y e. A | ph } -> A. z e. Pred ( R , A , w ) [. z / y ]. ph ) |
| 8 | 3 7 | sylbi | |- ( Pred ( R , A , w ) C_ { y e. A | ph } -> A. z e. Pred ( R , A , w ) [. z / y ]. ph ) |
| 9 | nfv | |- F/ y w e. A |
|
| 10 | nfcv | |- F/_ y Pred ( R , A , w ) |
|
| 11 | nfsbc1v | |- F/ y [. z / y ]. ph |
|
| 12 | 10 11 | nfralw | |- F/ y A. z e. Pred ( R , A , w ) [. z / y ]. ph |
| 13 | nfsbc1v | |- F/ y [. w / y ]. ph |
|
| 14 | 12 13 | nfim | |- F/ y ( A. z e. Pred ( R , A , w ) [. z / y ]. ph -> [. w / y ]. ph ) |
| 15 | 9 14 | nfim | |- F/ y ( w e. A -> ( A. z e. Pred ( R , A , w ) [. z / y ]. ph -> [. w / y ]. ph ) ) |
| 16 | eleq1w | |- ( y = w -> ( y e. A <-> w e. A ) ) |
|
| 17 | predeq3 | |- ( y = w -> Pred ( R , A , y ) = Pred ( R , A , w ) ) |
|
| 18 | 17 | raleqdv | |- ( y = w -> ( A. z e. Pred ( R , A , y ) [. z / y ]. ph <-> A. z e. Pred ( R , A , w ) [. z / y ]. ph ) ) |
| 19 | sbceq1a | |- ( y = w -> ( ph <-> [. w / y ]. ph ) ) |
|
| 20 | 18 19 | imbi12d | |- ( y = w -> ( ( A. z e. Pred ( R , A , y ) [. z / y ]. ph -> ph ) <-> ( A. z e. Pred ( R , A , w ) [. z / y ]. ph -> [. w / y ]. ph ) ) ) |
| 21 | 16 20 | imbi12d | |- ( y = w -> ( ( y e. A -> ( A. z e. Pred ( R , A , y ) [. z / y ]. ph -> ph ) ) <-> ( w e. A -> ( A. z e. Pred ( R , A , w ) [. z / y ]. ph -> [. w / y ]. ph ) ) ) ) |
| 22 | 15 21 1 | chvarfv | |- ( w e. A -> ( A. z e. Pred ( R , A , w ) [. z / y ]. ph -> [. w / y ]. ph ) ) |
| 23 | 8 22 | syl5 | |- ( w e. A -> ( Pred ( R , A , w ) C_ { y e. A | ph } -> [. w / y ]. ph ) ) |
| 24 | 23 | anc2li | |- ( w e. A -> ( Pred ( R , A , w ) C_ { y e. A | ph } -> ( w e. A /\ [. w / y ]. ph ) ) ) |
| 25 | 4 | elrabsf | |- ( w e. { y e. A | ph } <-> ( w e. A /\ [. w / y ]. ph ) ) |
| 26 | 24 25 | imbitrrdi | |- ( w e. A -> ( Pred ( R , A , w ) C_ { y e. A | ph } -> w e. { y e. A | ph } ) ) |
| 27 | 26 | rgen | |- A. w e. A ( Pred ( R , A , w ) C_ { y e. A | ph } -> w e. { y e. A | ph } ) |
| 28 | frind | |- ( ( ( R Fr A /\ R Se A ) /\ ( { y e. A | ph } C_ A /\ A. w e. A ( Pred ( R , A , w ) C_ { y e. A | ph } -> w e. { y e. A | ph } ) ) ) -> A = { y e. A | ph } ) |
|
| 29 | 2 27 28 | mpanr12 | |- ( ( R Fr A /\ R Se A ) -> A = { y e. A | ph } ) |
| 30 | rabid2 | |- ( A = { y e. A | ph } <-> A. y e. A ph ) |
|
| 31 | 29 30 | sylib | |- ( ( R Fr A /\ R Se A ) -> A. y e. A ph ) |