This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for the well-founded predicate. (Contributed by NM, 9-Mar-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | freq1 | |- ( R = S -> ( R Fr A <-> S Fr A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq | |- ( R = S -> ( z R y <-> z S y ) ) |
|
| 2 | 1 | notbid | |- ( R = S -> ( -. z R y <-> -. z S y ) ) |
| 3 | 2 | rexralbidv | |- ( R = S -> ( E. y e. x A. z e. x -. z R y <-> E. y e. x A. z e. x -. z S y ) ) |
| 4 | 3 | imbi2d | |- ( R = S -> ( ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. z e. x -. z R y ) <-> ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. z e. x -. z S y ) ) ) |
| 5 | 4 | albidv | |- ( R = S -> ( A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. z e. x -. z R y ) <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. z e. x -. z S y ) ) ) |
| 6 | df-fr | |- ( R Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. z e. x -. z R y ) ) |
|
| 7 | df-fr | |- ( S Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. z e. x -. z S y ) ) |
|
| 8 | 5 6 7 | 3bitr4g | |- ( R = S -> ( R Fr A <-> S Fr A ) ) |