This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Finite and infinite products
Finite products
fprodclf
Metamath Proof Explorer
Description: Closure of a finite product of complex numbers. A version of fprodcl using bound-variable hypotheses instead of distinct variable conditions.
(Contributed by Glauco Siliprandi , 5-Apr-2020)
Ref
Expression
Hypotheses
fprodclf.kph
⊢ Ⅎ k φ
fprodclf.a
⊢ φ → A ∈ Fin
fprodclf.b
⊢ φ ∧ k ∈ A → B ∈ ℂ
Assertion
fprodclf
⊢ φ → ∏ k ∈ A B ∈ ℂ
Proof
Step
Hyp
Ref
Expression
1
fprodclf.kph
⊢ Ⅎ k φ
2
fprodclf.a
⊢ φ → A ∈ Fin
3
fprodclf.b
⊢ φ ∧ k ∈ A → B ∈ ℂ
4
ssidd
⊢ φ → ℂ ⊆ ℂ
5
mulcl
⊢ x ∈ ℂ ∧ y ∈ ℂ → x ⁢ y ∈ ℂ
6
5
adantl
⊢ φ ∧ x ∈ ℂ ∧ y ∈ ℂ → x ⁢ y ∈ ℂ
7
1cnd
⊢ φ → 1 ∈ ℂ
8
1 4 6 2 3 7
fprodcllemf
⊢ φ → ∏ k ∈ A B ∈ ℂ