This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of weak dominance (definitional form). (Contributed by Stefan O'Rear, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brwdom | ⊢ ( 𝑌 ∈ 𝑉 → ( 𝑋 ≼* 𝑌 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝑌 ∈ 𝑉 → 𝑌 ∈ V ) | |
| 2 | relwdom | ⊢ Rel ≼* | |
| 3 | 2 | brrelex1i | ⊢ ( 𝑋 ≼* 𝑌 → 𝑋 ∈ V ) |
| 4 | 3 | a1i | ⊢ ( 𝑌 ∈ V → ( 𝑋 ≼* 𝑌 → 𝑋 ∈ V ) ) |
| 5 | 0ex | ⊢ ∅ ∈ V | |
| 6 | eleq1a | ⊢ ( ∅ ∈ V → ( 𝑋 = ∅ → 𝑋 ∈ V ) ) | |
| 7 | 5 6 | ax-mp | ⊢ ( 𝑋 = ∅ → 𝑋 ∈ V ) |
| 8 | forn | ⊢ ( 𝑧 : 𝑌 –onto→ 𝑋 → ran 𝑧 = 𝑋 ) | |
| 9 | vex | ⊢ 𝑧 ∈ V | |
| 10 | 9 | rnex | ⊢ ran 𝑧 ∈ V |
| 11 | 8 10 | eqeltrrdi | ⊢ ( 𝑧 : 𝑌 –onto→ 𝑋 → 𝑋 ∈ V ) |
| 12 | 11 | exlimiv | ⊢ ( ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 → 𝑋 ∈ V ) |
| 13 | 7 12 | jaoi | ⊢ ( ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) → 𝑋 ∈ V ) |
| 14 | 13 | a1i | ⊢ ( 𝑌 ∈ V → ( ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) → 𝑋 ∈ V ) ) |
| 15 | eqeq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 = ∅ ↔ 𝑋 = ∅ ) ) | |
| 16 | foeq3 | ⊢ ( 𝑥 = 𝑋 → ( 𝑧 : 𝑦 –onto→ 𝑥 ↔ 𝑧 : 𝑦 –onto→ 𝑋 ) ) | |
| 17 | 16 | exbidv | ⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑥 ↔ ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ) ) |
| 18 | 15 17 | orbi12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑥 ) ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ) ) ) |
| 19 | foeq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑧 : 𝑦 –onto→ 𝑋 ↔ 𝑧 : 𝑌 –onto→ 𝑋 ) ) | |
| 20 | 19 | exbidv | ⊢ ( 𝑦 = 𝑌 → ( ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ↔ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) |
| 21 | 20 | orbi2d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ) ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) ) |
| 22 | df-wdom | ⊢ ≼* = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑥 ) } | |
| 23 | 18 21 22 | brabg | ⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑋 ≼* 𝑌 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) ) |
| 24 | 23 | expcom | ⊢ ( 𝑌 ∈ V → ( 𝑋 ∈ V → ( 𝑋 ≼* 𝑌 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) ) ) |
| 25 | 4 14 24 | pm5.21ndd | ⊢ ( 𝑌 ∈ V → ( 𝑋 ≼* 𝑌 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) ) |
| 26 | 1 25 | syl | ⊢ ( 𝑌 ∈ 𝑉 → ( 𝑋 ≼* 𝑌 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) ) |