This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express being onto for a mapping operation. (Contributed by Glauco Siliprandi, 17-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fompt.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) | |
| Assertion | fompt | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fompt.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) | |
| 2 | fof | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 3 | 1 | fmpt | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 4 | 2 3 | sylibr | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ) |
| 5 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) | |
| 6 | 1 5 | nfcxfr | ⊢ Ⅎ 𝑥 𝐹 |
| 7 | 6 | foelrnf | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
| 8 | nfcv | ⊢ Ⅎ 𝑥 𝐴 | |
| 9 | nfcv | ⊢ Ⅎ 𝑥 𝐵 | |
| 10 | 6 8 9 | nffo | ⊢ Ⅎ 𝑥 𝐹 : 𝐴 –onto→ 𝐵 |
| 11 | simpr | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → 𝑦 = ( 𝐹 ‘ 𝑥 ) ) | |
| 12 | simpr | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) | |
| 13 | 4 | r19.21bi | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) |
| 14 | 1 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑥 ) = 𝐶 ) |
| 15 | 12 13 14 | syl2anc | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = 𝐶 ) |
| 16 | 15 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑥 ) = 𝐶 ) |
| 17 | 11 16 | eqtrd | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → 𝑦 = 𝐶 ) |
| 18 | 17 | exp31 | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( 𝑥 ∈ 𝐴 → ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 = 𝐶 ) ) ) |
| 19 | 10 18 | reximdai | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) ) |
| 20 | 19 | adantr | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) ) |
| 21 | 7 20 | mpd | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) |
| 22 | 21 | ralrimiva | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) |
| 23 | 4 22 | jca | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) ) |
| 24 | 3 | biimpi | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 25 | 24 | adantr | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 26 | nfv | ⊢ Ⅎ 𝑦 ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 | |
| 27 | nfra1 | ⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 | |
| 28 | 26 27 | nfan | ⊢ Ⅎ 𝑦 ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) |
| 29 | simpll | ⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) ∧ 𝑦 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ) | |
| 30 | rspa | ⊢ ( ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) | |
| 31 | 30 | adantll | ⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) |
| 32 | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 | |
| 33 | simp3 | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) → 𝑦 = 𝐶 ) | |
| 34 | simpr | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) | |
| 35 | rspa | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) | |
| 36 | 34 35 14 | syl2anc | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = 𝐶 ) |
| 37 | 36 | eqcomd | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 = ( 𝐹 ‘ 𝑥 ) ) |
| 38 | 37 | 3adant3 | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) → 𝐶 = ( 𝐹 ‘ 𝑥 ) ) |
| 39 | 33 38 | eqtrd | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) → 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
| 40 | 39 | 3exp | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐶 → 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 41 | 32 40 | reximdai | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
| 42 | 29 31 41 | sylc | ⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
| 43 | 28 42 | ralrimia | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) → ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
| 44 | 6 | dffo3f | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
| 45 | 25 43 44 | sylanbrc | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) → 𝐹 : 𝐴 –onto→ 𝐵 ) |
| 46 | 23 45 | impbii | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) ) |