This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function's domain is a singleton iff the function is a singleton. (Contributed by Steven Nguyen, 18-Aug-2023) Relax condition for being in the universal class. (Revised by Zhi Wang, 21-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnsnbg | |- ( A e. V -> ( F Fn { A } <-> F = { <. A , ( F ` A ) >. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnsnr | |- ( F Fn { A } -> ( x e. F -> x = <. A , ( F ` A ) >. ) ) |
|
| 2 | 1 | adantl | |- ( ( A e. V /\ F Fn { A } ) -> ( x e. F -> x = <. A , ( F ` A ) >. ) ) |
| 3 | fnfun | |- ( F Fn { A } -> Fun F ) |
|
| 4 | snidg | |- ( A e. V -> A e. { A } ) |
|
| 5 | 4 | adantr | |- ( ( A e. V /\ F Fn { A } ) -> A e. { A } ) |
| 6 | fndm | |- ( F Fn { A } -> dom F = { A } ) |
|
| 7 | 6 | adantl | |- ( ( A e. V /\ F Fn { A } ) -> dom F = { A } ) |
| 8 | 5 7 | eleqtrrd | |- ( ( A e. V /\ F Fn { A } ) -> A e. dom F ) |
| 9 | funfvop | |- ( ( Fun F /\ A e. dom F ) -> <. A , ( F ` A ) >. e. F ) |
|
| 10 | 3 8 9 | syl2an2 | |- ( ( A e. V /\ F Fn { A } ) -> <. A , ( F ` A ) >. e. F ) |
| 11 | eleq1 | |- ( x = <. A , ( F ` A ) >. -> ( x e. F <-> <. A , ( F ` A ) >. e. F ) ) |
|
| 12 | 10 11 | syl5ibrcom | |- ( ( A e. V /\ F Fn { A } ) -> ( x = <. A , ( F ` A ) >. -> x e. F ) ) |
| 13 | 2 12 | impbid | |- ( ( A e. V /\ F Fn { A } ) -> ( x e. F <-> x = <. A , ( F ` A ) >. ) ) |
| 14 | velsn | |- ( x e. { <. A , ( F ` A ) >. } <-> x = <. A , ( F ` A ) >. ) |
|
| 15 | 13 14 | bitr4di | |- ( ( A e. V /\ F Fn { A } ) -> ( x e. F <-> x e. { <. A , ( F ` A ) >. } ) ) |
| 16 | 15 | eqrdv | |- ( ( A e. V /\ F Fn { A } ) -> F = { <. A , ( F ` A ) >. } ) |
| 17 | 16 | ex | |- ( A e. V -> ( F Fn { A } -> F = { <. A , ( F ` A ) >. } ) ) |
| 18 | fvex | |- ( F ` A ) e. _V |
|
| 19 | fnsng | |- ( ( A e. V /\ ( F ` A ) e. _V ) -> { <. A , ( F ` A ) >. } Fn { A } ) |
|
| 20 | 18 19 | mpan2 | |- ( A e. V -> { <. A , ( F ` A ) >. } Fn { A } ) |
| 21 | fneq1 | |- ( F = { <. A , ( F ` A ) >. } -> ( F Fn { A } <-> { <. A , ( F ` A ) >. } Fn { A } ) ) |
|
| 22 | 20 21 | syl5ibrcom | |- ( A e. V -> ( F = { <. A , ( F ` A ) >. } -> F Fn { A } ) ) |
| 23 | 17 22 | impbid | |- ( A e. V -> ( F Fn { A } <-> F = { <. A , ( F ` A ) >. } ) ) |