This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of operation value and ordered triple membership, analogous to fnopfvb . (Contributed by NM, 17-Dec-2008) (Revised by Mario Carneiro, 28-Apr-2015) (Proof shortened by BJ, 15-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnotovb | ⊢ ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( ( 𝐶 𝐹 𝐷 ) = 𝑅 ↔ 〈 𝐶 , 𝐷 , 𝑅 〉 ∈ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnbrovb | ⊢ ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) ) → ( ( 𝐶 𝐹 𝐷 ) = 𝑅 ↔ 〈 𝐶 , 𝐷 〉 𝐹 𝑅 ) ) | |
| 2 | df-br | ⊢ ( 〈 𝐶 , 𝐷 〉 𝐹 𝑅 ↔ 〈 〈 𝐶 , 𝐷 〉 , 𝑅 〉 ∈ 𝐹 ) | |
| 3 | 2 | a1i | ⊢ ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) ) → ( 〈 𝐶 , 𝐷 〉 𝐹 𝑅 ↔ 〈 〈 𝐶 , 𝐷 〉 , 𝑅 〉 ∈ 𝐹 ) ) |
| 4 | df-ot | ⊢ 〈 𝐶 , 𝐷 , 𝑅 〉 = 〈 〈 𝐶 , 𝐷 〉 , 𝑅 〉 | |
| 5 | 4 | eqcomi | ⊢ 〈 〈 𝐶 , 𝐷 〉 , 𝑅 〉 = 〈 𝐶 , 𝐷 , 𝑅 〉 |
| 6 | 5 | eleq1i | ⊢ ( 〈 〈 𝐶 , 𝐷 〉 , 𝑅 〉 ∈ 𝐹 ↔ 〈 𝐶 , 𝐷 , 𝑅 〉 ∈ 𝐹 ) |
| 7 | 6 | a1i | ⊢ ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) ) → ( 〈 〈 𝐶 , 𝐷 〉 , 𝑅 〉 ∈ 𝐹 ↔ 〈 𝐶 , 𝐷 , 𝑅 〉 ∈ 𝐹 ) ) |
| 8 | 1 3 7 | 3bitrd | ⊢ ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) ) → ( ( 𝐶 𝐹 𝐷 ) = 𝑅 ↔ 〈 𝐶 , 𝐷 , 𝑅 〉 ∈ 𝐹 ) ) |
| 9 | 8 | 3impb | ⊢ ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( ( 𝐶 𝐹 𝐷 ) = 𝑅 ↔ 〈 𝐶 , 𝐷 , 𝑅 〉 ∈ 𝐹 ) ) |