This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of operation value and ordered triple membership, analogous to fnopfvb . (Contributed by NM, 17-Dec-2008) (Revised by Mario Carneiro, 28-Apr-2015) (Proof shortened by BJ, 15-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnotovb | |- ( ( F Fn ( A X. B ) /\ C e. A /\ D e. B ) -> ( ( C F D ) = R <-> <. C , D , R >. e. F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnbrovb | |- ( ( F Fn ( A X. B ) /\ ( C e. A /\ D e. B ) ) -> ( ( C F D ) = R <-> <. C , D >. F R ) ) |
|
| 2 | df-br | |- ( <. C , D >. F R <-> <. <. C , D >. , R >. e. F ) |
|
| 3 | 2 | a1i | |- ( ( F Fn ( A X. B ) /\ ( C e. A /\ D e. B ) ) -> ( <. C , D >. F R <-> <. <. C , D >. , R >. e. F ) ) |
| 4 | df-ot | |- <. C , D , R >. = <. <. C , D >. , R >. |
|
| 5 | 4 | eqcomi | |- <. <. C , D >. , R >. = <. C , D , R >. |
| 6 | 5 | eleq1i | |- ( <. <. C , D >. , R >. e. F <-> <. C , D , R >. e. F ) |
| 7 | 6 | a1i | |- ( ( F Fn ( A X. B ) /\ ( C e. A /\ D e. B ) ) -> ( <. <. C , D >. , R >. e. F <-> <. C , D , R >. e. F ) ) |
| 8 | 1 3 7 | 3bitrd | |- ( ( F Fn ( A X. B ) /\ ( C e. A /\ D e. B ) ) -> ( ( C F D ) = R <-> <. C , D , R >. e. F ) ) |
| 9 | 8 | 3impb | |- ( ( F Fn ( A X. B ) /\ C e. A /\ D e. B ) -> ( ( C F D ) = R <-> <. C , D , R >. e. F ) ) |