This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Operations
fnotovb
Metamath Proof Explorer
Description: Equivalence of operation value and ordered triple membership, analogous to
fnopfvb . (Contributed by NM , 17-Dec-2008) (Revised by Mario
Carneiro , 28-Apr-2015) (Proof shortened by BJ , 15-Feb-2022)
Ref
Expression
Assertion
fnotovb
⊢ F Fn A × B ∧ C ∈ A ∧ D ∈ B → C F D = R ↔ C D R ∈ F
Proof
Step
Hyp
Ref
Expression
1
fnbrovb
⊢ F Fn A × B ∧ C ∈ A ∧ D ∈ B → C F D = R ↔ C D F R
2
df-br
⊢ C D F R ↔ C D R ∈ F
3
2
a1i
⊢ F Fn A × B ∧ C ∈ A ∧ D ∈ B → C D F R ↔ C D R ∈ F
4
df-ot
⊢ C D R = C D R
5
4
eqcomi
⊢ C D R = C D R
6
5
eleq1i
⊢ C D R ∈ F ↔ C D R ∈ F
7
6
a1i
⊢ F Fn A × B ∧ C ∈ A ∧ D ∈ B → C D R ∈ F ↔ C D R ∈ F
8
1 3 7
3bitrd
⊢ F Fn A × B ∧ C ∈ A ∧ D ∈ B → C F D = R ↔ C D R ∈ F
9
8
3impb
⊢ F Fn A × B ∧ C ∈ A ∧ D ∈ B → C F D = R ↔ C D R ∈ F