This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Moore-closure is a well-behaved function. (Contributed by Stefan O'Rear, 1-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnmrc | |- mrCls Fn U. ran Moore |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mrc | |- mrCls = ( c e. U. ran Moore |-> ( x e. ~P U. c |-> |^| { s e. c | x C_ s } ) ) |
|
| 2 | 1 | fnmpt | |- ( A. c e. U. ran Moore ( x e. ~P U. c |-> |^| { s e. c | x C_ s } ) e. _V -> mrCls Fn U. ran Moore ) |
| 3 | mreunirn | |- ( c e. U. ran Moore <-> c e. ( Moore ` U. c ) ) |
|
| 4 | mrcflem | |- ( c e. ( Moore ` U. c ) -> ( x e. ~P U. c |-> |^| { s e. c | x C_ s } ) : ~P U. c --> c ) |
|
| 5 | fssxp | |- ( ( x e. ~P U. c |-> |^| { s e. c | x C_ s } ) : ~P U. c --> c -> ( x e. ~P U. c |-> |^| { s e. c | x C_ s } ) C_ ( ~P U. c X. c ) ) |
|
| 6 | 4 5 | syl | |- ( c e. ( Moore ` U. c ) -> ( x e. ~P U. c |-> |^| { s e. c | x C_ s } ) C_ ( ~P U. c X. c ) ) |
| 7 | vuniex | |- U. c e. _V |
|
| 8 | 7 | pwex | |- ~P U. c e. _V |
| 9 | vex | |- c e. _V |
|
| 10 | 8 9 | xpex | |- ( ~P U. c X. c ) e. _V |
| 11 | ssexg | |- ( ( ( x e. ~P U. c |-> |^| { s e. c | x C_ s } ) C_ ( ~P U. c X. c ) /\ ( ~P U. c X. c ) e. _V ) -> ( x e. ~P U. c |-> |^| { s e. c | x C_ s } ) e. _V ) |
|
| 12 | 6 10 11 | sylancl | |- ( c e. ( Moore ` U. c ) -> ( x e. ~P U. c |-> |^| { s e. c | x C_ s } ) e. _V ) |
| 13 | 3 12 | sylbi | |- ( c e. U. ran Moore -> ( x e. ~P U. c |-> |^| { s e. c | x C_ s } ) e. _V ) |
| 14 | 2 13 | mprg | |- mrCls Fn U. ran Moore |