This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the class of fixed points of a function. (Contributed by Stefan O'Rear, 1-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fninfp | ⊢ ( 𝐹 Fn 𝐴 → dom ( 𝐹 ∩ I ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = 𝑥 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnresdm | ⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) | |
| 2 | 1 | ineq1d | ⊢ ( 𝐹 Fn 𝐴 → ( ( 𝐹 ↾ 𝐴 ) ∩ I ) = ( 𝐹 ∩ I ) ) |
| 3 | inres | ⊢ ( I ∩ ( 𝐹 ↾ 𝐴 ) ) = ( ( I ∩ 𝐹 ) ↾ 𝐴 ) | |
| 4 | incom | ⊢ ( I ∩ 𝐹 ) = ( 𝐹 ∩ I ) | |
| 5 | 4 | reseq1i | ⊢ ( ( I ∩ 𝐹 ) ↾ 𝐴 ) = ( ( 𝐹 ∩ I ) ↾ 𝐴 ) |
| 6 | 3 5 | eqtri | ⊢ ( I ∩ ( 𝐹 ↾ 𝐴 ) ) = ( ( 𝐹 ∩ I ) ↾ 𝐴 ) |
| 7 | incom | ⊢ ( ( 𝐹 ↾ 𝐴 ) ∩ I ) = ( I ∩ ( 𝐹 ↾ 𝐴 ) ) | |
| 8 | inres | ⊢ ( 𝐹 ∩ ( I ↾ 𝐴 ) ) = ( ( 𝐹 ∩ I ) ↾ 𝐴 ) | |
| 9 | 6 7 8 | 3eqtr4i | ⊢ ( ( 𝐹 ↾ 𝐴 ) ∩ I ) = ( 𝐹 ∩ ( I ↾ 𝐴 ) ) |
| 10 | 2 9 | eqtr3di | ⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ∩ I ) = ( 𝐹 ∩ ( I ↾ 𝐴 ) ) ) |
| 11 | 10 | dmeqd | ⊢ ( 𝐹 Fn 𝐴 → dom ( 𝐹 ∩ I ) = dom ( 𝐹 ∩ ( I ↾ 𝐴 ) ) ) |
| 12 | fnresi | ⊢ ( I ↾ 𝐴 ) Fn 𝐴 | |
| 13 | fndmin | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴 ) Fn 𝐴 ) → dom ( 𝐹 ∩ ( I ↾ 𝐴 ) ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑥 ) } ) | |
| 14 | 12 13 | mpan2 | ⊢ ( 𝐹 Fn 𝐴 → dom ( 𝐹 ∩ ( I ↾ 𝐴 ) ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑥 ) } ) |
| 15 | fvresi | ⊢ ( 𝑥 ∈ 𝐴 → ( ( I ↾ 𝐴 ) ‘ 𝑥 ) = 𝑥 ) | |
| 16 | 15 | eqeq2d | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) |
| 17 | 16 | rabbiia | ⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑥 ) } = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = 𝑥 } |
| 18 | 17 | a1i | ⊢ ( 𝐹 Fn 𝐴 → { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑥 ) } = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = 𝑥 } ) |
| 19 | 11 14 18 | 3eqtrd | ⊢ ( 𝐹 Fn 𝐴 → dom ( 𝐹 ∩ I ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = 𝑥 } ) |