This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the class of fixed points of a function. (Contributed by Stefan O'Rear, 1-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fninfp | |- ( F Fn A -> dom ( F i^i _I ) = { x e. A | ( F ` x ) = x } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnresdm | |- ( F Fn A -> ( F |` A ) = F ) |
|
| 2 | 1 | ineq1d | |- ( F Fn A -> ( ( F |` A ) i^i _I ) = ( F i^i _I ) ) |
| 3 | inres | |- ( _I i^i ( F |` A ) ) = ( ( _I i^i F ) |` A ) |
|
| 4 | incom | |- ( _I i^i F ) = ( F i^i _I ) |
|
| 5 | 4 | reseq1i | |- ( ( _I i^i F ) |` A ) = ( ( F i^i _I ) |` A ) |
| 6 | 3 5 | eqtri | |- ( _I i^i ( F |` A ) ) = ( ( F i^i _I ) |` A ) |
| 7 | incom | |- ( ( F |` A ) i^i _I ) = ( _I i^i ( F |` A ) ) |
|
| 8 | inres | |- ( F i^i ( _I |` A ) ) = ( ( F i^i _I ) |` A ) |
|
| 9 | 6 7 8 | 3eqtr4i | |- ( ( F |` A ) i^i _I ) = ( F i^i ( _I |` A ) ) |
| 10 | 2 9 | eqtr3di | |- ( F Fn A -> ( F i^i _I ) = ( F i^i ( _I |` A ) ) ) |
| 11 | 10 | dmeqd | |- ( F Fn A -> dom ( F i^i _I ) = dom ( F i^i ( _I |` A ) ) ) |
| 12 | fnresi | |- ( _I |` A ) Fn A |
|
| 13 | fndmin | |- ( ( F Fn A /\ ( _I |` A ) Fn A ) -> dom ( F i^i ( _I |` A ) ) = { x e. A | ( F ` x ) = ( ( _I |` A ) ` x ) } ) |
|
| 14 | 12 13 | mpan2 | |- ( F Fn A -> dom ( F i^i ( _I |` A ) ) = { x e. A | ( F ` x ) = ( ( _I |` A ) ` x ) } ) |
| 15 | fvresi | |- ( x e. A -> ( ( _I |` A ) ` x ) = x ) |
|
| 16 | 15 | eqeq2d | |- ( x e. A -> ( ( F ` x ) = ( ( _I |` A ) ` x ) <-> ( F ` x ) = x ) ) |
| 17 | 16 | rabbiia | |- { x e. A | ( F ` x ) = ( ( _I |` A ) ` x ) } = { x e. A | ( F ` x ) = x } |
| 18 | 17 | a1i | |- ( F Fn A -> { x e. A | ( F ` x ) = ( ( _I |` A ) ` x ) } = { x e. A | ( F ` x ) = x } ) |
| 19 | 11 14 18 | 3eqtrd | |- ( F Fn A -> dom ( F i^i _I ) = { x e. A | ( F ` x ) = x } ) |