This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function's value belongs to the image. (Contributed by Glauco Siliprandi, 23-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fnfvimad.1 | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) | |
| fnfvimad.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | ||
| fnfvimad.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐶 ) | ||
| Assertion | fnfvimad | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 “ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfvimad.1 | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) | |
| 2 | fnfvimad.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | |
| 3 | fnfvimad.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐶 ) | |
| 4 | inss2 | ⊢ ( 𝐴 ∩ 𝐶 ) ⊆ 𝐶 | |
| 5 | imass2 | ⊢ ( ( 𝐴 ∩ 𝐶 ) ⊆ 𝐶 → ( 𝐹 “ ( 𝐴 ∩ 𝐶 ) ) ⊆ ( 𝐹 “ 𝐶 ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ( 𝐹 “ ( 𝐴 ∩ 𝐶 ) ) ⊆ ( 𝐹 “ 𝐶 ) |
| 7 | inss1 | ⊢ ( 𝐴 ∩ 𝐶 ) ⊆ 𝐴 | |
| 8 | 7 | a1i | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐶 ) ⊆ 𝐴 ) |
| 9 | 2 3 | elind | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 ∩ 𝐶 ) ) |
| 10 | fnfvima | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐴 ∩ 𝐶 ) ⊆ 𝐴 ∧ 𝐵 ∈ ( 𝐴 ∩ 𝐶 ) ) → ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 “ ( 𝐴 ∩ 𝐶 ) ) ) | |
| 11 | 1 8 9 10 | syl3anc | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 “ ( 𝐴 ∩ 𝐶 ) ) ) |
| 12 | 6 11 | sselid | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 “ 𝐶 ) ) |