This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function's value belongs to the image. (Contributed by Glauco Siliprandi, 23-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fnfvimad.1 | |- ( ph -> F Fn A ) |
|
| fnfvimad.2 | |- ( ph -> B e. A ) |
||
| fnfvimad.3 | |- ( ph -> B e. C ) |
||
| Assertion | fnfvimad | |- ( ph -> ( F ` B ) e. ( F " C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfvimad.1 | |- ( ph -> F Fn A ) |
|
| 2 | fnfvimad.2 | |- ( ph -> B e. A ) |
|
| 3 | fnfvimad.3 | |- ( ph -> B e. C ) |
|
| 4 | inss2 | |- ( A i^i C ) C_ C |
|
| 5 | imass2 | |- ( ( A i^i C ) C_ C -> ( F " ( A i^i C ) ) C_ ( F " C ) ) |
|
| 6 | 4 5 | ax-mp | |- ( F " ( A i^i C ) ) C_ ( F " C ) |
| 7 | inss1 | |- ( A i^i C ) C_ A |
|
| 8 | 7 | a1i | |- ( ph -> ( A i^i C ) C_ A ) |
| 9 | 2 3 | elind | |- ( ph -> B e. ( A i^i C ) ) |
| 10 | fnfvima | |- ( ( F Fn A /\ ( A i^i C ) C_ A /\ B e. ( A i^i C ) ) -> ( F ` B ) e. ( F " ( A i^i C ) ) ) |
|
| 11 | 1 8 9 10 | syl3anc | |- ( ph -> ( F ` B ) e. ( F " ( A i^i C ) ) ) |
| 12 | 6 11 | sselid | |- ( ph -> ( F ` B ) e. ( F " C ) ) |