This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a cover is finer than another, every point can be approached more closely by intersections. (Contributed by Jeff Hankins, 11-Oct-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fneint | ⊢ ( 𝐴 Fne 𝐵 → ∩ { 𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥 } ⊆ ∩ { 𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2w | ⊢ ( 𝑥 = 𝑦 → ( 𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑦 ) ) | |
| 2 | 1 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥 } ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑃 ∈ 𝑦 ) ) |
| 3 | fnessex | ⊢ ( ( 𝐴 Fne 𝐵 ∧ 𝑦 ∈ 𝐴 ∧ 𝑃 ∈ 𝑦 ) → ∃ 𝑧 ∈ 𝐵 ( 𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) | |
| 4 | 3 | 3expb | ⊢ ( ( 𝐴 Fne 𝐵 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑃 ∈ 𝑦 ) ) → ∃ 𝑧 ∈ 𝐵 ( 𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) |
| 5 | eleq2w | ⊢ ( 𝑥 = 𝑧 → ( 𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑧 ) ) | |
| 6 | 5 | intminss | ⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝑃 ∈ 𝑧 ) → ∩ { 𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥 } ⊆ 𝑧 ) |
| 7 | sstr | ⊢ ( ( ∩ { 𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥 } ⊆ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) → ∩ { 𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥 } ⊆ 𝑦 ) | |
| 8 | 6 7 | sylan | ⊢ ( ( ( 𝑧 ∈ 𝐵 ∧ 𝑃 ∈ 𝑧 ) ∧ 𝑧 ⊆ 𝑦 ) → ∩ { 𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥 } ⊆ 𝑦 ) |
| 9 | 8 | expl | ⊢ ( 𝑧 ∈ 𝐵 → ( ( 𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) → ∩ { 𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥 } ⊆ 𝑦 ) ) |
| 10 | 9 | rexlimiv | ⊢ ( ∃ 𝑧 ∈ 𝐵 ( 𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) → ∩ { 𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥 } ⊆ 𝑦 ) |
| 11 | 4 10 | syl | ⊢ ( ( 𝐴 Fne 𝐵 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑃 ∈ 𝑦 ) ) → ∩ { 𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥 } ⊆ 𝑦 ) |
| 12 | 11 | ex | ⊢ ( 𝐴 Fne 𝐵 → ( ( 𝑦 ∈ 𝐴 ∧ 𝑃 ∈ 𝑦 ) → ∩ { 𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥 } ⊆ 𝑦 ) ) |
| 13 | 2 12 | biimtrid | ⊢ ( 𝐴 Fne 𝐵 → ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥 } → ∩ { 𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥 } ⊆ 𝑦 ) ) |
| 14 | 13 | ralrimiv | ⊢ ( 𝐴 Fne 𝐵 → ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥 } ∩ { 𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥 } ⊆ 𝑦 ) |
| 15 | ssint | ⊢ ( ∩ { 𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥 } ⊆ ∩ { 𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥 } ↔ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥 } ∩ { 𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥 } ⊆ 𝑦 ) | |
| 16 | 14 15 | sylibr | ⊢ ( 𝐴 Fne 𝐵 → ∩ { 𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥 } ⊆ ∩ { 𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥 } ) |