This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a cover is finer than another, every point can be approached more closely by intersections. (Contributed by Jeff Hankins, 11-Oct-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fneint | |- ( A Fne B -> |^| { x e. B | P e. x } C_ |^| { x e. A | P e. x } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2w | |- ( x = y -> ( P e. x <-> P e. y ) ) |
|
| 2 | 1 | elrab | |- ( y e. { x e. A | P e. x } <-> ( y e. A /\ P e. y ) ) |
| 3 | fnessex | |- ( ( A Fne B /\ y e. A /\ P e. y ) -> E. z e. B ( P e. z /\ z C_ y ) ) |
|
| 4 | 3 | 3expb | |- ( ( A Fne B /\ ( y e. A /\ P e. y ) ) -> E. z e. B ( P e. z /\ z C_ y ) ) |
| 5 | eleq2w | |- ( x = z -> ( P e. x <-> P e. z ) ) |
|
| 6 | 5 | intminss | |- ( ( z e. B /\ P e. z ) -> |^| { x e. B | P e. x } C_ z ) |
| 7 | sstr | |- ( ( |^| { x e. B | P e. x } C_ z /\ z C_ y ) -> |^| { x e. B | P e. x } C_ y ) |
|
| 8 | 6 7 | sylan | |- ( ( ( z e. B /\ P e. z ) /\ z C_ y ) -> |^| { x e. B | P e. x } C_ y ) |
| 9 | 8 | expl | |- ( z e. B -> ( ( P e. z /\ z C_ y ) -> |^| { x e. B | P e. x } C_ y ) ) |
| 10 | 9 | rexlimiv | |- ( E. z e. B ( P e. z /\ z C_ y ) -> |^| { x e. B | P e. x } C_ y ) |
| 11 | 4 10 | syl | |- ( ( A Fne B /\ ( y e. A /\ P e. y ) ) -> |^| { x e. B | P e. x } C_ y ) |
| 12 | 11 | ex | |- ( A Fne B -> ( ( y e. A /\ P e. y ) -> |^| { x e. B | P e. x } C_ y ) ) |
| 13 | 2 12 | biimtrid | |- ( A Fne B -> ( y e. { x e. A | P e. x } -> |^| { x e. B | P e. x } C_ y ) ) |
| 14 | 13 | ralrimiv | |- ( A Fne B -> A. y e. { x e. A | P e. x } |^| { x e. B | P e. x } C_ y ) |
| 15 | ssint | |- ( |^| { x e. B | P e. x } C_ |^| { x e. A | P e. x } <-> A. y e. { x e. A | P e. x } |^| { x e. B | P e. x } C_ y ) |
|
| 16 | 14 15 | sylibr | |- ( A Fne B -> |^| { x e. B | P e. x } C_ |^| { x e. A | P e. x } ) |