This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Append an additional value to a function. (Contributed by NM, 6-Jun-2006) (Revised by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fmptap.0a | ⊢ 𝐴 ∈ V | |
| fmptap.0b | ⊢ 𝐵 ∈ V | ||
| fmptap.1 | ⊢ ( 𝑅 ∪ { 𝐴 } ) = 𝑆 | ||
| fmptap.2 | ⊢ ( 𝑥 = 𝐴 → 𝐶 = 𝐵 ) | ||
| Assertion | fmptap | ⊢ ( ( 𝑥 ∈ 𝑅 ↦ 𝐶 ) ∪ { 〈 𝐴 , 𝐵 〉 } ) = ( 𝑥 ∈ 𝑆 ↦ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptap.0a | ⊢ 𝐴 ∈ V | |
| 2 | fmptap.0b | ⊢ 𝐵 ∈ V | |
| 3 | fmptap.1 | ⊢ ( 𝑅 ∪ { 𝐴 } ) = 𝑆 | |
| 4 | fmptap.2 | ⊢ ( 𝑥 = 𝐴 → 𝐶 = 𝐵 ) | |
| 5 | fmptsn | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → { 〈 𝐴 , 𝐵 〉 } = ( 𝑥 ∈ { 𝐴 } ↦ 𝐵 ) ) | |
| 6 | 1 2 5 | mp2an | ⊢ { 〈 𝐴 , 𝐵 〉 } = ( 𝑥 ∈ { 𝐴 } ↦ 𝐵 ) |
| 7 | elsni | ⊢ ( 𝑥 ∈ { 𝐴 } → 𝑥 = 𝐴 ) | |
| 8 | 7 4 | syl | ⊢ ( 𝑥 ∈ { 𝐴 } → 𝐶 = 𝐵 ) |
| 9 | 8 | mpteq2ia | ⊢ ( 𝑥 ∈ { 𝐴 } ↦ 𝐶 ) = ( 𝑥 ∈ { 𝐴 } ↦ 𝐵 ) |
| 10 | 6 9 | eqtr4i | ⊢ { 〈 𝐴 , 𝐵 〉 } = ( 𝑥 ∈ { 𝐴 } ↦ 𝐶 ) |
| 11 | 10 | uneq2i | ⊢ ( ( 𝑥 ∈ 𝑅 ↦ 𝐶 ) ∪ { 〈 𝐴 , 𝐵 〉 } ) = ( ( 𝑥 ∈ 𝑅 ↦ 𝐶 ) ∪ ( 𝑥 ∈ { 𝐴 } ↦ 𝐶 ) ) |
| 12 | mptun | ⊢ ( 𝑥 ∈ ( 𝑅 ∪ { 𝐴 } ) ↦ 𝐶 ) = ( ( 𝑥 ∈ 𝑅 ↦ 𝐶 ) ∪ ( 𝑥 ∈ { 𝐴 } ↦ 𝐶 ) ) | |
| 13 | 3 | mpteq1i | ⊢ ( 𝑥 ∈ ( 𝑅 ∪ { 𝐴 } ) ↦ 𝐶 ) = ( 𝑥 ∈ 𝑆 ↦ 𝐶 ) |
| 14 | 11 12 13 | 3eqtr2i | ⊢ ( ( 𝑥 ∈ 𝑅 ↦ 𝐶 ) ∪ { 〈 𝐴 , 𝐵 〉 } ) = ( 𝑥 ∈ 𝑆 ↦ 𝐶 ) |