This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Append an additional value to a function. (Contributed by Thierry Arnoux, 3-Jan-2017) (Revised by AV, 10-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fmptapd.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| fmptapd.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| fmptapd.s | ⊢ ( 𝜑 → ( 𝑅 ∪ { 𝐴 } ) = 𝑆 ) | ||
| fmptapd.c | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐶 = 𝐵 ) | ||
| Assertion | fmptapd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑅 ↦ 𝐶 ) ∪ { 〈 𝐴 , 𝐵 〉 } ) = ( 𝑥 ∈ 𝑆 ↦ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptapd.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | fmptapd.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 3 | fmptapd.s | ⊢ ( 𝜑 → ( 𝑅 ∪ { 𝐴 } ) = 𝑆 ) | |
| 4 | fmptapd.c | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐶 = 𝐵 ) | |
| 5 | 4 1 2 | fmptsnd | ⊢ ( 𝜑 → { 〈 𝐴 , 𝐵 〉 } = ( 𝑥 ∈ { 𝐴 } ↦ 𝐶 ) ) |
| 6 | 5 | uneq2d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑅 ↦ 𝐶 ) ∪ { 〈 𝐴 , 𝐵 〉 } ) = ( ( 𝑥 ∈ 𝑅 ↦ 𝐶 ) ∪ ( 𝑥 ∈ { 𝐴 } ↦ 𝐶 ) ) ) |
| 7 | mptun | ⊢ ( 𝑥 ∈ ( 𝑅 ∪ { 𝐴 } ) ↦ 𝐶 ) = ( ( 𝑥 ∈ 𝑅 ↦ 𝐶 ) ∪ ( 𝑥 ∈ { 𝐴 } ↦ 𝐶 ) ) | |
| 8 | 7 | a1i | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑅 ∪ { 𝐴 } ) ↦ 𝐶 ) = ( ( 𝑥 ∈ 𝑅 ↦ 𝐶 ) ∪ ( 𝑥 ∈ { 𝐴 } ↦ 𝐶 ) ) ) |
| 9 | 3 | mpteq1d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑅 ∪ { 𝐴 } ) ↦ 𝐶 ) = ( 𝑥 ∈ 𝑆 ↦ 𝐶 ) ) |
| 10 | 6 8 9 | 3eqtr2d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑅 ↦ 𝐶 ) ∪ { 〈 𝐴 , 𝐵 〉 } ) = ( 𝑥 ∈ 𝑆 ↦ 𝐶 ) ) |