This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A mapping filter is a filter. (Contributed by Jeff Hankins, 18-Sep-2009) (Revised by Stefan O'Rear, 6-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fmfil | |- ( ( X e. A /\ B e. ( fBas ` Y ) /\ F : Y --> X ) -> ( ( X FilMap F ) ` B ) e. ( Fil ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmval | |- ( ( X e. A /\ B e. ( fBas ` Y ) /\ F : Y --> X ) -> ( ( X FilMap F ) ` B ) = ( X filGen ran ( y e. B |-> ( F " y ) ) ) ) |
|
| 2 | eqid | |- ran ( y e. B |-> ( F " y ) ) = ran ( y e. B |-> ( F " y ) ) |
|
| 3 | 2 | fbasrn | |- ( ( B e. ( fBas ` Y ) /\ F : Y --> X /\ X e. A ) -> ran ( y e. B |-> ( F " y ) ) e. ( fBas ` X ) ) |
| 4 | 3 | 3comr | |- ( ( X e. A /\ B e. ( fBas ` Y ) /\ F : Y --> X ) -> ran ( y e. B |-> ( F " y ) ) e. ( fBas ` X ) ) |
| 5 | fgcl | |- ( ran ( y e. B |-> ( F " y ) ) e. ( fBas ` X ) -> ( X filGen ran ( y e. B |-> ( F " y ) ) ) e. ( Fil ` X ) ) |
|
| 6 | 4 5 | syl | |- ( ( X e. A /\ B e. ( fBas ` Y ) /\ F : Y --> X ) -> ( X filGen ran ( y e. B |-> ( F " y ) ) ) e. ( Fil ` X ) ) |
| 7 | 1 6 | eqeltrd | |- ( ( X e. A /\ B e. ( fBas ` Y ) /\ F : Y --> X ) -> ( ( X FilMap F ) ` B ) e. ( Fil ` X ) ) |